
CodePad: Interactive Spaces for Maintaining
Concentration in Programming Environments

Chris Parnin, Carsten Görg, and Spencer Rugaber
College of Computing, Georgia Institute of Technology, Atlanta, GA USA

chris.parnin@gatech.edu, {goerg,spencer}@cc.gatech.edu

ABSTRACT

When software developers work with a program’s source
code, the structure of the source code often requires that
they split their attention simultaneously across several doc-
uments and artifacts. Disruptions to programmers’ concen-
tration caused by overwhelmed capacity can then lead to
programming errors and increases in the time to perform
a task. We suggest the addition of peripheral interactive
spaces to programming environments for supporting devel-
opers in maintaining their concentration. We introduce the
novel concept of a CodePad, a peripheral, multi-touch en-
abled display that allows developers to engage with and ma-
nipulate multiple programming artifacts. We illustrate visu-
alizations built for a CodePad that support multiple devel-
opment scenarios and we describe how developers can coor-
dinate the interaction and communication between a Code-
Pad and a programming environment in personal and col-
laborative tasks. Additionally, we propose a design space
for other visualization tools and detail our initial prototype.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Design

1. INTRODUCTION
Software development tasks typically require coordinat-

ing changes across multiple locations in a program’s source
code. Existing integrated development environments (IDEs)
have provided limited support for maintaining working state
associated with active artifacts relevant to the programming
task. IDEs provide support for linking artifacts, including
tabbed editors for editing multiple files, hierarchical file lists
that can be collapsed and expanded, forward/backward nav-
igation commands to return to previous locations, and lists
of recently visited files. Most of IDE support relies on using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 25–26, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

artifact names for linking; research comparing development
interfaces using names or the content that a name refers
to has shown that names are slower and less accurate [24]
and content is strongly preferred [20]. Further, little sup-
port is given for managing working state such as plans, task
progress, or recent actions associated with these artifacts.

Poor IDE support for programming tasks has resulted in
developers having to still spend extra time managing work-
ing state and wasting effort in recovering lost artifacts. In a
study of developers, Ko and colleagues found that developers
spent 35% of their time navigating and recovering code [11].
Interestingly, developers were leveraging cues from the pro-
gramming environment (such as Eclipse’s package explorer,
file tabs, and scroll bars) to encode their mental state of
relevant code; however, the cues were highly unstable and
could easily lose visibility (as they were erased by subse-
quent efforts). Other researchers have found that program-
mers need to frequently recover these lost artifacts: In a
controlled study of program exploration tasks, 57% of pro-
gram entities explored were frequently revisited [26]. In our
previous field study of the work history of 10 professional
programmers that spanned several weeks of development,
we found that 60% of transitions between program entities
were between different documents; furthermore, on a typi-
cal day the developers worked with 51 to 83 methods [21].
In general, programming environments do not make work-
ing state a first class entity that can be shielded from the
constant shifting of focus, which contributes to an increased
difficulty in maintaining concentration.

In response to this problem, research has attempted to
either provide better links to relevant artifacts, or provide
abstractions or visualizations capable of displaying multiple
artifacts. When tools attempt to provide links to relevant
artifacts, they have to predict or use a heuristic for what
relevant means. Unfortunately, predictive guesses are rarely
correct [21], and spatial visualizations break down when de-
velopers must transition to spatially distant locations (as
they frequently do [11, 21, 26]) increasing the likelihood to
become disoriented when panning and zooming.

In practice, programmers cope with the problem of main-
taining concentration by adopting practices such as note tak-
ing, but they are given little support in linking their notes
with a programming environment or situating their notes in
a context. For programming tasks, text is not necessarily the
dominant form of expression [3], nor is coding the dominant
activity [13]. Our previous research on software developers
shows that developers make extensive use of paper and other
media distinct from the programming environment to man-

15

age programming tasks [20]. One developer we interviewed
supports programming tasks by using a white board, a tablet
for writing notes, several monitors and virtual machines, and
a dedicated monitor with a document containing a stream
of screen shots. In studying working style of hundreds of
developers, it became clear that programmers vary in how
they work depending on experience, task load, task types,
and personal working styles; however, each is struggling to
grapple with managing knowledge and attention across pro-
gramming tasks and often resorts to using measures outside
the programming environment to cope.
We propose a new approach—instead of trying to predict

or assume what is relevant to a developer, we stress two im-
portant components for maintaining concentration: First,
we provide an interactive space [23] distinct and physically
separate from the programming environment that allows
the developer to manage and see what is relevant. Second,
this interactive space has additional modalities available for
interacting with and annotating content. Together, these
components create a mental playground separate from the
programming environment, allowing developers to maintain
concentration on their difficult and often interrupted work
and provide an additional place to keep their thoughts. We
call this interactive space a CodePad, a device that meets
the following requirements: (a) displays content, (b) exists
separate from a programming environment, (c) allows multi-
modal input (pen and multi-touch), and (d) communicates
and synchronizes with the programming environment.
To illustrate the problems with current approaches, we

consider a programmer who would like to refactor code. In
this particular case, she would like to consolidate several
helper methods located throughout the source code. She
does not have time to perform a root canal refactoring [17],
but instead wants to interleave refactoring with her normal
programming tasks. In current development systems, she
would have little support: she would have to copy and paste
the to-be-extracted methods and locations into a temporary
text document or to individually perform the method ex-
traction and relocation, constantly disrupting the main task.
With a system such as Code Canvas [7] or Code Bubbles [2],
the programmer could spatially arrange the code documents
or fragments containing the prospective locations; however,
she would still be forced to manage her attention between
creating and organizing these fragments in the middle of
her task, because they occupy the same space. Any re-
design would have difficulty in addressing this issue without
disrupting the main display and task. Using a CodePad,
the programmer can maintain task or activity separation or
simultaneously interact with the same code from multiple
perspectives. In Section 3, we describe in more detail how a
CodePad would assist the programmer with the code refac-
toring. We also detail how the CodePad would help with
other tasks that involve disruption to concentration.
The main contributions of this paper are:

• A design space for interactive spaces that can coordi-
nate with programming environments

• Visualizations for maintaining awareness of develop-
ment artifacts, and

• Interactions for engaging and coordinating attention
across these artifacts.

The human-computer interaction and the information vi-
sualization community have already adopted different types
of interactive spaces to support users in executing demand-

Figure 1: Workspace with a main development space
(IDE on the large screen in the middle) and two
additional interactive spaces: one dedicated Code-
Pad (screen on the right) and one portable CodePad
(tablet computer on the left).

ing tasks [25]. Until now, the software visualization com-
munity did not take recent developments in this research
domain into account, missing opportunities in the process.
Thus, the main benefit of introducing the CodePad concept
is to showcase to the software visualization community how
advanced interactive spaces can support developers. An-
other benefit of our work is the foundation of conceptual and
development frameworks that other researchers can extend
to advance coordination designs, gestures, and visualizations
for developers.

2. CODEPAD DESIGN SPACE
Creating interactive spaces for developers enables several

new possibilities, but it also introduces several challenges. In
this section, we present five different form factors for Code-
Pads, discuss how CodePads can be linked to and commu-
nicate with IDEs, and illustrate design choices for content
presented on a CodePad.

Figure 1 shows a developer’s work environment who is
using two CodePads. The main development space is the
IDE in the middle, there is one dedicated CodePad on the
right, and one portable CodePad on the left.

2.1 Form Factor
Developers leverage different spaces and multiple forms of

media in supporting programming tasks. Research on mul-
tiple monitor usage finds users with multiple monitors per-
form less window swapping than single-monitor users and
position applications to have an affinity with a particular
monitor [9]. In addition, users adopt strategies such as leav-
ing open windows on secondary monitors as reminders or
cues for tasks, and compartmentalizing tasks into separate
containers. When displays are super-sized (filling the room),
the additional space offers more opportunities for users to
externalize memory and leverage spatial context in perform-
ing difficult tasks [1].

We now describe five different form factors that offer dif-
ferent affordances for a CodePad.

2.1.1 Dedicated CodePad

A dedicated CodePad is useful for tasks requiring frequent
and tactile manipulation of content. A dedicated CodePad

16

is generally large in size and situated close to the developer.
The large size discourages repositioning, leaving the device
mostly stationary. An example of a dedicated CodePad is
included in Figure 1 on the right, a 21 inch interactive pen
display.1 This device is generally positioned at a tilt much
like a drafting table, allowing comfortable pen interactions
with the display content. A dedicated CodePad is well suited
for capturing detailed and expressive notes associated with
work artifacts.

2.1.2 Tabletop CodePad

A tabletop CodePad allows the surface of a desk used by
a programmer to double as an interactive display. Through
underlying infrared sensors or an overhead camera, con-
tent displayed on a tabletop CodePad can be manipulated
through pen and touch gestures. The readily available space
on a desk offers strategic placement of content, links, and
quick notes within arms reach. An example of a tabletop
CodePad device includes the Microsoft Surface,2 a device
capable of projecting content and sensing pen and multiple
touch points based on infrared detection.

2.1.3 Portable CodePad

A portable CodePad is mid-sized but readily mobile, al-
lowing a programmer to maintain a few items while en-
abling moderate interaction. The portable CodePad is ideal
for sharing content with another developer, taking quick
notes at a meeting, or even working in transit (e.g., train
into work). Tablet computers provide a starting point for
portable CodePads; however, current tablet computers are
bulky, have poor interaction support, and provide little inte-
gration with a programming environment. Besides tablets,
a more apt device comes in the form of an iPad.3

2.1.4 CodePad Strip

For programmers working in a non-traditional office envi-
ronment (e.g., in a coffee shop), the lack of multiple moni-
tors or interactive desks may seem like the programmer has
been suddenly handicapped. However, in such scenarios,
this problem can be addressed with the introduction of a
CodePad strip, a thin horizontal interactive display. A Code-
Pad strip allows simple thumbnails or visualizations of code
artifacts to be displayed and interacted with. For example,
a CodePad strip allows a programmer to easily switch be-
tween code documents by simply pressing a thumbnail of the
code artifact. Laptop manufacturers are starting to include
small touchable screens on the keyboard area of a laptop;
standalone CodePad strips placed on the table are also pos-
sible. A design suggestion of a CodePad strip is show in
Figure 2.

2.1.5 Paper-like CodePad

A final device we describe is a codeprint, a paper-like
CodePad. A codeprint is light-weight, stackable, and eas-
ily portable. The ultra-thin form factor allows a developer
to maintain several codeprints, easing the ability to switch
between active codeprints and facilitating task-switching.
Codeprints also expand the possibilities for handing-off work
or delivering more interactive reports. The technology for
codeprints is not far off: Electronic ink displays are rapidly

1http://www.wacom.com/cintiq
2http://www.microsoft.com/surface
3http://www.apple.com/ipad

Figure 2: A design suggestion showing how a thin
CodePad strip could be integrated with a laptop
computer (touchable code documents thumbnails
are shown).

becoming reduced in weight and cost, and color versions
have been developed. The main remaining challenge is to
improve interaction capabilities of their displays.

2.2 Communication and Linkage
A challenge of having multiple interactive spaces is the

lack of coordination and communication between the con-
tent of a programming environment and a CodePad. The
issue of coordination is deeper than how to transfer content
between the IDE and a CodePad. Transferring content can
be solved by networking and in some cases it even is not
a problem at all (e.g., a dedicated CodePad is essentially
an additional monitor connected to the same machine used
for the programming task). The important and challenging
problem is the decision of how much and what type of au-
tomation is offered for transferring content. We now briefly
describe three linkage paradigms (see Figure 3) between a
programming environment and any CodePad device. Keep
in mind, these paradigms can be mixed and other paradigms
certainly exist.

Autoassociative or relational linkage: a CodePad dis-
plays properties of a particular event or item whenever the
item is focused or active (Figure 3(a)). There are numerous
possibilities for how a CodePad could be bound in this man-
ner: children of a parent class, emails and task descriptions
associated with an active task, documentation of a method,
code examples, or suggestions of relevant locations made by
a recommendation system. If an item of interest is displayed
on the CodePad, that item can be activated within the pro-
gramming environment by touching the item or it can be
saved by pinning the item with a specific gesture.

Synchronized or mirrored linkage: annotated content
from a programming environment is projected onto a Code-
Pad (Figure 3(b)). The nature of this projection may occur
in various forms. We present three examples: overlay, ab-
straction, and detail. In an overlay projection, the CodePad
displays information not visible in the programming envi-
ronment with the content. For example, a code document is
overlaid with notes from other developers or navigation trails
from recent navigation. An abstraction projection presents
the same content but in a simpler form (e.g., an UML class
diagram of current documents). A detailed projection pro-

17

(a) (b) (c)

Figure 3: An IDE and a CodePad can be linked in various ways. Figure (a) shows an autoassociative link
(the CodePad automatically displays related information to selected items in the IDE); Figure (b) shows a
synchronized link (the CodePad mirrors and annotates content from the IDE); Figure (c) shows a manual
link (the programmer manually sends content from the IDE to the CodePad).

vides very specific but localized presentation of an item—for
example, control flow or runtime values of variables.

Send-to or manual linkage: a programmer manually
transfers an item to a CodePad (Figure 3(c)). The transfer
operation can be initiated within the programming environ-
ment (from a context menu or keyboard short-cut) or from
a grab gesture on the CodePad. Grabbing an item does not
have to occur automatically but can be initiated from com-
mands such as finding all references to a method, with the
results appearing on the CodePad. Manually gathering con-
tent from a programming environment allows quick and ad-
hoc segmentation of work artifacts. Finally, transfer opera-
tions are not limited to just being between a programming
environment and a CodePad, but it is also possible to per-
form a send-to operation between CodePads (from a table-
top CodePad to a portable CodePad) or to non-CodePad
devices such as another teammate’s electronic whiteboard.

2.3 Content Design
When designing applications for a CodePad, questions

such as the following arise: How much of an item should
be represented on the CodePad? Which operations should
occur on a CodePad, and which ones should occur in the
IDE? In the following, we discuss some guidelines.
A CodePad can serve two main purposes: either provid-

ing spatial contexts for salient cues that aid in the recall
and restoration of appropriate items within a programming
environment (a smarter tab) or novel manipulations of con-
tent not easily available or comfortable in normal contexts
(instead of an outstretched arm to interact with distal moni-
tors). Choosing one purpose or attempting to find a common
ground somewhere in between has significant effects on the
resulting design of visualizations and interactions.
When representing a code document on a CodePad, the

design choices must consider with how much fidelity the doc-
ument should be represented. Low fidelity representation
(salient cues) can support linkage; manipulation of the doc-
ument requires a high fidelity representation. Salient cues
can include document thumbnails, frequent words within a
document, actions performed on a document, people asso-
ciated with previously editing a document, and relations to
other parts of code. But for manipulating the document,

more and more of the document and interaction begins to
migrate to the CodePad.

On the one hand, a CodePad can provide a haven for links
into code undisturbed by the confused and exploratory ac-
tivities of a programmer; on the other hand, a CodePad can
provide rich annotations and casual manipulations of com-
plex content not easily achieved in text form. The challenge
is to avoid creating an incoherent and stale mess (computer
desktop full of icons never clicked) coupled with ensuring
interactions and content depictions do not detract from the
benefits of the expanded interactive space. In the coming
sections, we explore and elaborate further on this design
tension in the context of specific programming scenarios.

3. PROGRAMMING SCENARIOS
In this section, we discuss three programming tasks and

scenarios that involve maintaining concentration across mul-
tiple programming artifacts. We first provide background
information from workplace studies that describe how par-
ticular programming tasks occur in practice. Next, we pro-
vide detailed explanations of the visualizations and interac-
tions used by developers to complete the tasks. For brevity,
we omit any initial configuration of the CodePad and pro-
gramming environment and what steps would be necessary
to change the mode of operation (refactoring mode or navi-
gation mode).We conclude each scenario with a discussion.

3.1 Refactoring: Extracting andMoving Code

3.1.1 Task

Refactoring is the process of changing the structure of a
program without changing its behavior. A common refactor-
ing is called Extract Method, which first removes a subset
of code from a long method, second creates a new method
containing the extracted code, and finally configures the for-
merly long method to use the newly extracted method. Ex-
tract Method is one of the most frequent refactorings de-
velopers want to perform [16], but developers use available
refactoring tools in IDEs only 10% of the time [18]. One
common reason for not using refactoring tools to perform
an extract method is that developers want to batch several
extractions together and then relocate the newly extracted
methods to other locations. Current IDE tool support does

18

Developer adds methods to CodePad. Developer sketches new class. Developer drags methods into class.

public Point CenterPoint(Polyline line)

{

var first = line.Points.First();

var last = line.Points.Last();

return new Point((first.X + last.X) / 2,

(first.Y + last.Y) / 2);

} public Point
CenterPoint(Polyline line)
{

var first =
line.Points.First();

var last =
line.Points.Last();

return new Point((first.X +
last.X) / 2,

(first.Y + last.Y) /
2);
}

public Point
CenterPoint(Polyline line)
{

var first =
line.Points.First();

var last =
line.Points.Last();

return new Point((first.X +
last.X) / 2,

(first.Y + last.Y) /
2);
}

public Point
CenterPoint(Polyline line)
{

var first =
line.Points.First();

var last =
line.Points.Last();

return new Point((first.X +
last.X) / 2,

(first.Y + last.Y) /
2);
}

(a) (b) (c)

(1) Hi!ng backlink restores method in IDE

1

Figure 4: Workflow for performing a refactoring using a CodePad as an additional interactive space.

not make it easy to perform batch and compound refac-
torings because developers have to hold in memory all the
locations involved with fragmenting, reassembling, and relo-
cating code or rely on purposely breaking code to track code
which can be problematic if unexpected issues arise and the
refactoring needs to be rolled back.

3.1.2 CodePad Visualization and Interaction

How can a developer use a CodePad for refactoring? We
first describe the workflow for supporting the refactoring (see
Figure 4) and then detail the visualizations and interactions
used in the process.
When a developer encounters a prospective code segment

to relocate, she uses a send-to shortcut within the IDE which
will transfer the currently selected method or code to the
CodePad (Figure 4(a)); we are assuming only one CodePad
is used for this example. After the developer has accumu-
lated enough code fragments to gather together and form a
new class, she initiates a square gesture on the CodePad to
create a new placeholder (Figure 4(b)). Now she can begin
to move methods into the class (Figure 4(c)). At this point,
the developer may decide that the collection of methods ac-
tually involves two distinct concepts and should be divided
into two classes. She uses a square gesture to create another
placeholder class and then relocates some of the methods
over to the other class.
The developer is confident that the batch refactoring can

now be performed, but she would like to test it first. She
uses a check gesture to test if the refactoring is feasible.
Unfortunately, there is a problem with one of the extracted
methods: A member variable was referenced in the code
but is no longer available in the new class. The developer
uses the back link on the problematic method extraction to
bring the code into focus on the IDE. She manually fixes
the problem at the original extraction site to address the
issue (the method on the CodePad is updated as well). She
confirms again with a check gesture and is informed that
the refactorings can be now successfully applied. To apply
the refactorings, the developer flicks the placeholder class
toward the IDE (logical top of CodePad) and the refactoring
is applied in the IDE where the developer can finalize details
such as renaming the generated classes.

To represent a method on the CodePad, we display the
method signature and the body in a scaled vector-based re-
duction. Because extracted methods tend to exist indepen-
dently and programmers only need to recognize a method,
we do not provide any other contextual cues (original file)
for the extracted methods. However, we do provide a back
link icon for returning to the method location within the
programming environment. When a method is dragged into
a class box, we display the method name without signature
and provide a small thumbnail of the method body text. Af-
ter a check gesture, problematic methods are unpacked from
the contained class and marked to indicate the error. Oth-
erwise, if successful, correct classes are highlighted in green.
Table 1 shows a summary of gestures used in this scenario.

Gesture Action

Create new placeholder class

Validate that a refactoring can be performed

Perform batch refactorings of selected item

Discard item

Table 1: Gestures supporting extract and move
refactorings.

3.1.3 Discussion

Tabletop CodePads or portable CodePads would be the
most suitable type of CodePads to perform refactorings.
Two characteristics make these devices ideal: First, the
medium-to-large amount of space available offers enough
room to accommodate several methods. Second, both de-
vices offer the ability to temporarily maintain items in the
periphery while accumulating prospective methods to refac-
tor and then easily bring into closer range when ready to
perform the refactoring activity. For these types of refactor-
ings, we believe manual linkage is the best way to coordinate
content between the CodePad and IDE.

19

Automa�cally link to open documents. Naviga�ng with waypoints and edit marks. Mark or toss unnecessary documents.

(c)(b)(a)

Automa�cally link to open documents. Naviga

(a)

Figure 5: Workflow for navigating through document tabs using a CodePad as an additional interactive space.

There are several ways to improve workflow, gestures, and
visualizations. Additional gestures for further extractions of
code would offer more flexibility to a developer. Certainly,
more strategies need to be developed for handling the fall out
of refactoring errors and handling modality switches from a
keyboard and focus in an IDE to a CodePad. Finally, im-
provements to the method representation (such as semantic
zoom) can provide better aid for recognizing large methods
that have been reduced on small CodePads.

3.2 Navigation through Document Tabs
When developers need to transition between documents,

the main failing of document tabs are (1) they become spa-
tially unstable and (2) document names are not very distinc-
tive nor strongly associated with content (which is under-
standable considering a document can be reached via com-
mands such as goto definition without ever being exposed
to the document name).
In studies of developer navigation histories, a common

finding is that developers frequently visit many locations in
rapid succession in a phenomenon known as navigation jit-
ter [27]. Navigation jitter has been commonly attributed
to developers flipping through open tabs and file lists when
trying to recall a location [21, 27]. If a fixed list of the
four most recently used documents was maintained, 69% of
navigations between documents could be satisfied [21]; how-
ever, developers often become frustrated with the number of
open documents and choose to close all open tabs and start
again. As a result, 74% of navigations not using document
tabs occur by selecting it from the hierarchical file list (e.g.,
package explorer in Eclipse) [15].

3.2.1 Task

In a web-based software project, a programmer has been
assigned with the task of implementing labeling on a module
within the program. Users of the software are able to cus-
tomize what labels appear throughout the module, such as
tabs, table columns, and headers. The programmer must be
able to methodically track and maintain several locations
among different items (database scripts, C# web-service,
javascript, and html files) to ensure the proper customization
of labels. The code impacted by this change does not neces-
sarily have a concrete search path, instead requiring a careful

examination of the source code. Once all affected locations
have been identified, additional care must be taken to en-
sure each location is properly changed. Document tabs offer
poor support for representing the points of interest within
the document and distinguishing relevant documents from
intermediate stepping stones opened.

3.2.2 CodePad Visualization and Interaction

When making a coordinated change across the program
to support end-user labeling, the developer must track, in
addition to the locations, the status of change (has it been
changed yet?), special cases (how to handle customizing a
label of grid column), and prospective actions (remember to
add label refresh event).

With a CodePad, the developer can maintain a task over-
view as he makes progress. Every open document tab in
the IDE is also mirrored on the CodePad (Figure 5(a)). If
he closes a tab or uses a discard gesture on the CodePad,
the document will be closed in both places. Each document
is displayed in a scaled vector-based reduction to fit on the
CodePad. The CodePad only needs to carry enough detail
for coordinating attention (the resolution of code documents
only needs to be sufficient for recognizing code), reads and
edits can be done on the main screen. Rather than zooming
and panning an entire virtual canvas, expand and shrink
gestures can be easily applied to any target as needed.

As the developer visits and makes changes, he can see
with waypoint markers (green for edits, blue for navigation)
which parts of the code have been visited or edited (Fig-
ure 5(b)). Waypoint size and transparency are based on fre-
quency and recency of interaction. To further provide the
developer a sense of movements through space, we provide a
bundled navigation trail between waypoints based on tran-
sition frequency. At any time, tapping waypoints will return
the focus in the IDE to those points in the document. To
declutter the work space, a wipe gesture (sideways hand ges-
ture) can clear out any annotations over the affected region
(Figure 5(c)).

The programmer has encountered several special cases
that must be handled and wants to mark these places to
have a reminder. With a CodePad, the developer can mark
the item in the IDE with a keyboard short cut, or use a se-
lect and then mark gesture on the CodePad to highlight the

20

code on the CodePad. Table 2 shows a summary of gestures
used in this scenario.

Gesture Action

Select a region of text

Highlight a region of text

Remove markers

Table 2: Gestures supporting document navigation
and annotation.

3.2.3 Discussion

Numerous variations can be applied to this visualization.
For smaller workloads, supporting extraction and pinning
of methods would allow developers to keep small fragments
available on hand without having to make more text visi-
ble. The ability to drag items together and form connec-
tions would support the creation of arbitrary relationships
between code items and an easy way to bring them into fo-
cus. A magnify lens overlay would allow quick peeking on
text without needing to expand or shrink it. Improved an-
notation support in the form of pen input and task-specific
icons (found bug, TODO, good example, or task step) would
enrich the developer’s ability to represent task knowledge.
The interaction of multiple CodePads could provide inter-

esting possibilities. Multiple CodePad strips could be used
to segregate content by affinity: A CodePad strip on the
keyboard could provide a place to maintain a fixed list of
code document thumbnails that do not change unless dis-
carded, whereas another CodePad strip could be used to
show recent documents or search results. Recommendations
of other code locations can be placed in a separate Code-
Pad strip. This segregation of content allows developers to
trust and regulate attention between different types of links
to content (a developer knows which code locations are rec-
ommendations and which code locations are tied to specific
activity based purely on spatial context).

3.3 Task Hand-Offs

3.3.1 Task

Much of the knowledge needed for programming tasks
is tacit in nature, leading to breakdowns in communica-
tion [12]. Some of this knowledge is internal to a specific
developer or codified in tribal knowledge across a develop-
ment team. Other bits of knowledge are never recorded or
explicitly represented: design rationale or annotated history
of recent code changes. This problem becomes apparent
when a programmer is unable to complete a task and must
hand-off an incomplete task to another developer or when a
programmer is interrupted during a programming task and
must rebuild lost context.
A large consulting company once attempted to achieve a

24-hour programming cycle. Developers in the USA would
program for 12 hours and at the end of the day the devel-
opers then would wrap-up and hand-off any incomplete pro-
gramming task to developers located overseas. The overseas
developers picked up the incomplete tasks and attempted
to make progress and then sent back the code to the USA
developers. The project failed.

This story illustrates the difficulty programmers can have
in communicating the knowledge needed for performing tasks
—currently, developers have little support for capturing tacit
knowledge with existing programming environments.

3.3.2 CodePad Visualization and Interaction

A programmer in the 24-hour development cycle scenario
wants an effective way to review recent changes, make com-
ments in the context of the changes, and suggest what needs
to happen next. Asking the task recipient to review the
code difference is impractical because it provides no logical
way to navigate or annotate the structure. To support this
programmer, we provide an interactive code history visual-
ization that allows the developer to send an annotated code
history to a task recipient. We first show the programmer
a temporal breakdown of code changes and navigations as
they happened and then allow the programmer to select and
annotate which relevant items should be sent to the task re-
cipient.

To obtain a finer temporal breakdown, we record a work
history from the programming environment that includes
navigation or click events, change activity, and snapshots of
code documents at every save and build. From this work
history, we segment the events into coherent groups called
code episodes by using marker events such as switching doc-
uments or performing a build. We render each code episode
with a degree of interest over the code document (that is only
include code lines involved in events) and decorate the docu-
ment with details from the work history (bold clicked words,
color code differences). When rendering the code episode,
we also include the following contextual details: file name,
line numbers, timestamp, and class and method signatures
(even if not in the original degree of interest).

Figure 6 illustrates how a developer can create an anno-
tated code history. On the CodePad, the developer can bring
up a history visualization. The developer can quickly thumb
through the history with scroll gestures (Figure 6(a)): The
scroll speed varies with the speed of the scroll gesture and
terminates with a decelerating inertia after release of the
finger. For longer histories or as a way to reach past events
quicker, a pinch gesture adjusts the granularity of the his-
tory in staggered levels of temporal and semantic zoom. The
first level of zoom removes save episodes, the second level re-
moves the document switching constraint for grouping, the
third level of zoom only displays only the first episode and
last episode per build event. The highest levels of zoom pro-
vides a short summary of daily and weekly activity. Once
finding the relevant timeframe, the developer can zoom back
into more detail by using the expand gesture.

Developers can grab an item of interest by dragging a
code episode laterally onto the annotation side (Figure 6(b)).
The annotation side serves as a place to hold and arrange
interesting code episodes. At the annotation side, the devel-
oper can then rearrange the order of episodes (drag up or
down), merge them together (two finger merge) or split up
an episode (two finger slice) into smaller episodes. When a
code episode is placed at the annotation side, a back arrow
will appear that, when clicked, will allow the developer to
scroll and focus the timeline to the episode position. Double
tapping a code episode will focus the IDE on the selected
code document. With a pen stylus, code can be circled,
underlined, and annotated with general sketches or writing
(Figure 6(c)).

21

1) Expand/Shrink for Seman�c Zoom.

2) Scroll through coding history.

Grab interes�ng coding episodes. Underline, circle, and annotate.

Pellets.cs

13: public class Pellets

42: public void BlinkPowerPellet()

54: public void RemoveP ellet(Point Location)

108: _powerPellets

114: public void GeneratePellets()

GameB oard.cs

22: public class GameBoa rd

54: public event Power ModeEventHandler

62: public GameBoard(int W idth, int Height,

Syst em.Windo ws.Forms.P ictureBox Pi ctureGa meBoard)

wen=+netaEtellePnO.stellep_:66

Pellets.onPowerPelletEatenEventHandler(PelletEaten);

877:

//:388

889: _powerMode

(fi:098

(this, new EventArgs());

891:

892:

Game Charac ter.cs

5:namespace Chomp

13: public class Pellet s

19: _soundDevice = new Device();

27: public abstract class GameCharacter

35: protected int _moveInterval ;

215:

CurrentCoo rdinate)

;++y:922

;kaerb:032

256: {

261:

266:

esac:072

.stelleP.draob_:172 Gene ratePe llets

274:

;kaerb:772

282:

Pellets.cs

13: public class Pellets

42: public void BlinkPowerPellet()

54: public void RemoveP ellet(Point Location)

108: _powerPellets

114: public void GeneratePellets()

GameB oard.cs

22: public class GameBoa rd

54: public event Power ModeEventHandler

62: public GameBoard(int W idth, int Height,

Syst em.Windo ws.Forms.P ictureBox Pi ctureGa meBoard)

wen=+netaEtellePnO.stellep_:66

Pellets.onPowerPelletEatenEventHandler(PelletEaten);

877:

//:388

889: _powerMode

(fi:098

(this, new EventArgs());

891:

892:

Game Charac ter.cs

5:namespace Chomp

13: public class Pellet s

19: _soundDevice = new Device();

27: public abstract class GameCharacter

35: protected int _moveInterval ;

215:

CurrentCoo rdinate)

;++y:922

;kaerb:032

256: {

261:

266:

esac:072

.stelleP.draob_:172 Gene ratePe llets

274:

;kaerb:772

282:

Pellets.cs

13: public class Pellets

42: public void BlinkPowerPellet()

54: public void RemoveP ellet(Point Location)

108: _powerPellets

114: public void GeneratePellets()

GameB oard.cs

22: public class GameBoa rd

54: public event Power ModeEventHandler

62: public GameBoard(int W idth, int Height,

Syst em.Windo ws.Forms.P ictureBox Pi ctureGa meBoard)

wen=+netaEtellePnO.stellep_:66

Pellets.onPowerPelletEatenEventHandler(PelletEaten);

877:

//:388

889: _powerMode

(fi:098

(this, new EventArgs());

891:

892:

Game Charac ter.cs

5:namespace Chomp

13: public class Pellet s

19: _soundDevice = new Device();

27: public abstract class GameCharacter

35: protected int _moveInterval ;

215:

CurrentCoo rdinate)

;++y:922

;kaerb:032

256: {

261:

266:

esac:072

.stelleP.draob_:172 Gene ratePe llets

274:

;kaerb:772

282:

GameB oard.cs

22: public class GameBoa rd

54: public event Power ModeEventHandler

62: public GameBoard(int W idth, int Height,

Syst em.Windo ws.Forms.P ictureBox Pi ctureGa meBoard)

wen=+netaEtellePnO.stellep_:66

Pellets.onPowerPelletEatenEventH andler(PelletEaten);

877:

//:388

889: _powerMode

(fi:098

(this, new EventArgs());

891:

892:

1

2

(c)(b)(a)

GameB oard.cs

22: public class GameBoa rd

54: public event Power ModeEventHandler

62: public GameBoard(int W idth, int Height,

Syst em.Windo ws.Forms.P ictureBox Pi ctureGa meBoard)

wen=+netaEtellePnO.stellep_:66

Pellets.onPowerPelletEatenEventH andler(PelletEaten);

877:

//:388

889: _powerMode

(fi:098

(this, new EventArgs());

891:

892:

Figure 6: Workflow for creating an annotated change history using a CodePad.

With a few interesting code episodes extracted and anno-
tated, the developer can send an exported html file or a task
hand-off file to the task recipient. Task hand-off files can be
loaded and used to navigate to locations in the IDE. Now,
the task recipient has a better understanding of the task
progress and remaining work. Table 3 shows a summary of
gestures used in this scenario.

Gesture Action

Merge two code episodes together

Split a code episode

Table 3: Gestures supporting a task hand-off.

3.3.3 Discussion

More can be done with the annotated code history visu-
alization. In our discussion with developers, code develop-
ers have mentioned other possible collaborative uses such
as performing a peer review or asking a question, in addi-
tion, developers believed the annotated code history would
provide an excellent resource for resuming a programming
task that was interrupted or shelved. A stronger binding be-
tween code in the history and annotations could potentially
feed into other visualizations (e.g., display all references to
underlined code). This speaks to a weakness of the current
code history tool—the timeline may not hold code snippets
that are of interest and must be seperately fetched—but
such interactions might alleviate this problem.

3.4 Reflection
We often still print out a paper on which to mark and

annotate, leave paper sticky note reminders, or write on a
whiteboard. The motivations vary from expressiveness to
sociality of the medium, but what they have in common is
interactions in a physical space. They also share the same
failings: a static, fragile persistence aided by little more than
strokes of ink. CodePads offer more than the supplanta-
tion of physical paper with digital paper: A CodePad can
support multi-tasking by offering separate spatial contexts

for task content, annotating task goals and progress, main-
taining simultaneous perspectives of code, and manipulating
multiple code artifacts.

4. PROTOTYPE

4.1 Hardware
In our development with CodePads, we have used two de-

vices: a Wacom Cintiq 21ux and an Acer Aspire 1420P. The
Cintiq has a 21.3 inch LCD screen with a native 1600x1200
resolution. It has a swivel mount allowing the display to
be adjusted to lay more flat or purely vertical, much like a
drafting table or easel. Weighing in at 22 pounds, although
movable, a developer is not likely to move this display often,
but rather keep it as a dedicated CodePad. The pen provides
2048 distinct pressure levels and 60 degrees of tilt producing
near pencil-like writing. Unfortunately, the current Cintiq
does not support multi-touch; however, newer models are in
production that do allow multi-touch interaction in addition
to pen input.

The Acer Aspire 1420P is a multi-touch tablet notebook.
The display is an 11.6 inch LED LCD with 1366x768 reso-
lution. The size and weight (3.7 pounds/1.6 kilograms) best
categorizes this device as a portable CodePad. The multi-
touch display is still limited: Two simultaneous touch points
can be tracked and the size of touch points is not exposed.
We have performed most of our development on this device
with support of the Windows 7 Multi-Touch API.

4.2 Implementation
We have detailed a vision of CodePads for altering how

programmers interact with their software development en-
vironments. In exploring this vision, we have implemented
a variety of features and prototypes; however, much work
remains. Here, we present our current implementation and
highlight some of our next steps.

Our main implementation goal has been to provide a de-
velopment API and architecture for other researchers and
developers to create CodePad applications. Our API cen-
ters around three components: an IDE interaction service
provider, a service layer, and a gesture engine.

22

The IDE interaction service provider allows the CodePad
to subscribe to events from the IDE or to send actions to
the IDE. We have implemented providers for Visual Studio
2008 and 2010. Services include subscribing to the opening
and closing of documents, and sending a document, method,
or current selection to the CodePad. We also include ser-
vices for collecting work history (IDE actions, save and build
snapshots). To transfer items or send commands, we use
an HTTP REST protocol running locally on the machine.
We are currently in the process of providing an interface to
refactoring commands.
The service layer provides access to resources such as code

episode analysis for code history. In our services, we have
limited support for semantic and temporal zoom: Besides
Kim and Notkin’s work on systematic change summaries [10],
little research has looked into how to create semantic sum-
maries of coding activity. We are actively researching this
topic in order to provide services for improving semantic and
temporal zoom when browsing code history.
Our initial gesture framework used a naive implementa-

tion based on specifying matching line segments with rel-
ative thresholds on slope, length, and position. We distin-
guish a gesture from other possible gesture matches by main-
taining a lattice of simultaneously possible gesture states.
This implementation is not ideal; we are currently in the
process of rewriting the gesture recognition framework to
use a more robust template and projection scheme [14].
Improving the implementation and interactions of our vi-

sualizations is an ongoing effort. Error feedback and gener-
ation of batch refactoring is not yet developed. Bundling of
navigation trails is still in development. We support creat-
ing an annotated code history; however, we are still in the
process of supporting export and sharing. Finally, numer-
ous improvements need to be made in providing more tactile
feedback when manipulating content (e.g., when extracting
text, providing highlights around extracted text that makes
clear when the text has been dragged enough to “break-free”
from the document).

5. RELATEDWORK
Helping developers maintain focus and concentration has

received considerable attention from researchers (for a re-
view of the cognitive issues involved in memory and atten-
tion for programmers see Parnin [19]). The pattern of re-
search has pursued two goals. In the first goal, researchers
have attempted to provide better links to relevant artifacts.
In NavTracks [27], navigation loops are recovered from re-
cent navigation paths, and the files related to the current
method are displayed. In FAN [6], navigational history
is analyzed to display a list of methods that are accessed
next after visiting the current method. In our previous
study of recommendation tools, we found that recency is
the best predictor for recovering artifacts [21] (significantly
beating any historical-based recommendation used by these
systems), whereas predictive algorithms such as association
rules are better for assisting exploration. Mylyn4 uses the
frequency of recent interaction to highlight and filter items
from the document treeview to aid developers in identifying
documents of interest.
Examples of research pursuing the second goal include

Relo [28], which displays an abstracted representation of rel-

4http://www.eclipse.org/mylyn

evant artifacts in a complementary UML view that is built
from recently visited source code. SHriMP [29], uses a focus-
and-context paradigm to allow multiple code locations to
be viewed simultaneously. Code Thumbnails [5] represents
source code documents in a SeeSoft-like [8] view and places
the documents on a secondary monitor. An evaluation of
the view found that comprehension was improved for par-
ticipants that used the view in a coding task.

Code Canvas [7], an evolution of Code Thumbnails, seeks
to maintain spatially stable locations for source code. In
contrast to SHriMP, Code Canvas uses a semantic zoom and
pan interface; depending on the zoom level, Code Canvas
will vary what is displayed. For example, when the zoom
level is too high to view the text of code, method names
would still be visible, but when zoomed in further, more de-
tails would emerge. Instead of spatially stable documents,
Code Bubbles [2] displays multiple code fragments (meth-
ods) on a virtual canvas. Initially starting with an empty
canvas, Code Bubbles relies extensively on accumulating
fragments by structural links (all references to a method)
or search terms to place fragments onto the canvas. How-
ever, once fragments exist on the canvas, the navigation can
occur by panning left and right.

Although some research has explored using other devices
in support of software development, they have mainly fo-
cused on the design aspects, such as sketching UML [4].
Inside and outside of software development, research has
explored how to use additional display devices to augment
software development (which we previously reviewed in [22]).
However, these monitors are either more for ambient aware-
ness than for allowing direct interaction during active devel-
opment, or have not focused on software engineering.

Few of these research developments have caught the at-
tention of developers. We believe that many aspects about
programming environments design work well: Often a pro-
grammer only wants to look at one large document and fo-
cus on coding within that space, and tabs work almost 70%
of the time [21]. Also, most of the time, a treeview is a
very quick way to collapse and jump through many docu-
ments (74% non-tab navigations occur with a treeview [15]).
Other systems that provide visualizations or attempt to re-
design the IDE make managing attention a first order pro-
cess (programmers constantly pan, zoom, or filter within the
programming environment to focus on what is relevant). In
contrast, we make managing attention first class (real enti-
ties), but second order (not disturbing the main task) allow-
ing these practices to recede into the background.

6. CONCLUSION
Understanding, navigating, and changing software sys-

tems still remains a daily challenge for software develop-
ers. Human capacity for attention and memory ground our
designs; but poor design choices and increasing scale of de-
velopment efforts grate against these capacities. The choices
researchers have given developers so far is to choose between
better links to software (while coding in a main document) or
showing all the software (never escaping some form of view
management). Both choices promise a better way for the de-
veloper, but either alternative seems to make a stark align-
ment toward just one aspect of development, when there are
actually many.

Our motivation and argument is simple: Interaction and
manipulation of physical space is a compelling but relatively

23

unexplored alternative to virtual space. Interactive displays
of various sizes and form can greatly expand the mental
workspace of developers. Pulling aside a particular item of
interest can be far easier and less costly than managing ev-
erything as a fragment or hoping for an intelligent heuristic
to provide access to the correct artifacts.
What may be ultimately flawed about software visual-

ization is not the visualizations themselves but rather the
interactions with them. At the heart of any visualization is
interaction. Visualization systems, such as Code Bubbles or
Code Canvas, provide wonderful visualizations but do not
have a contingency plan for when interaction breaks down.
We believe CodePad greatly expands how software visualiza-
tion can be integrated into the daily activities of software de-
velopers in a way that spans the collaborative, exploratory,
threaded, and interrupted nature of programming. CodePad
does not supplant other visualizations —rather it provides
an interactive space for managing and coordinating artifacts
in the programming environment. For the developer, work
will continue but with a little more space. For the researcher,
numerous challenges and opportunities await.

7. REFERENCES
[1] C. Andrews, A. Endert, and C. North. Space to think:

large high-resolution displays for sensemaking. In CHI,
pages 55–64, 2010.

[2] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,
W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. LaViola, Jr. Code bubbles: a working set-based
interface for code understanding and maintenance. In
CHI, pages 2503–2512, 2010.

[3] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: how and why software
developers use drawings. In CHI, pages 557–566, 2007.

[4] R. Dachselt, M. Frisch, and E. Decker. Enhancing uml
sketch tools with digital pens and paper. In
SOFTVIS, pages 203–204, 2008.

[5] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson. Code thumbnails:
Using spatial memory to navigate source code. In
VLHCC, pages 11–18, 2006.

[6] R. DeLine, A. Khella, M. Czerwinski, and
G. Robertson. Towards understanding programs
through wear-based filtering. In SOFTVIS, pages
183–192, 2005.

[7] R. DeLine and K. Rowan. Code canvas: Zooming
towards better development environments. In ICSE
(New Ideas and Emerging Results), 2010.

[8] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr.
Seesoft-a tool for visualizing line oriented software
statistics. IEEE Trans. Softw. Eng., 18(11):957–968,
1992.

[9] D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski,
and G. Robertson. Display space usage and window
management operation comparisons between single
monitor and multiple monitor users. In AVI, pages
32–39, 2004.

[10] M. Kim and D. Notkin. Discovering and representing
systematic code changes. In ICSE, pages 309–319,
2009.

[11] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung. An exploratory study of how developers seek,

relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Softw. Eng.,
32(12):971–987, 2006.

[12] H. Krasner, B. Curtis, and N. Iscoe. Communication
breakdowns and boundary spanning activities on large
programming projects. Ablex Publishing Corp.,
Norwood, NJ, USA, 1987.

[13] T. D. Latoza, G. Venolia, and R. Deline. Maintaining
mental models: a study of developer work habits. In
ICSE, pages 492–501, 2006.

[14] Y. Li. Protractor: a fast and accurate gesture
recognizer. In CHI, pages 2169–2172, 2010.

[15] G. C. Murphy, M. Kersten, and L. Findlater. How are
Java software developers using the Eclipse IDE? IEEE
Softw., 23(4):76–83, 2006.

[16] E. Murphy-Hill and A. P. Black. Breaking the barriers
to successful refactoring: observations and tools for
extract method. In ICSE, pages 421–430, 2008.

[17] E. Murphy-Hill and A. P. Black. Refactoring tools:
Fitness for purpose. IEEE Softw., 25(5):38–44, 2008.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it. In ICSE, pages 287–297,
2009.

[19] C. Parnin. A cognitive neuroscience perspective on
memory for programming tasks. In In the Proceedings
of the 22nd Annual Meeting of the Psychology of
Programming Interest Group (PPIG), 2010.

[20] C. Parnin and R. DeLine. Evaluating cues for
resuming interrupted programming tasks. In CHI,
pages 93–102, 2010.

[21] C. Parnin and C. Görg. Building usage contexts during
program comprehension. In ICPC, pages 13–22, 2006.

[22] C. Parnin and C. Görg. Design guidelines for ambient
software visualization in the workplace. In VISSOFT,
pages 18 –25, 2007.

[23] M. G. Petersen. Interactive spaces: towards a better
everyday? Interactions, 12(4):44–45, 2005.

[24] I. Safer and G. C. Murphy. Comparing episodic and
semantic interfaces for task boundary identification. In
CASCON, pages 229–243, 2007.

[25] O. Shaer and E. Hornecker. Tangible user interfaces:
Past, present, and future directions. Found. Trends
Hum.-Comput. Interact., 3(1–2):1–137, 2010.

[26] J. Sillito, K. De Voider, B. Fisher, and G. Murphy.
Managing software change tasks: an exploratory
study. Empirical Software Engineering, 2005. 2005
International Symposium on, page 10 pp., nov. 2005.

[27] J. Singer, R. Elves, and M.-A. Storey. Navtracks:
Supporting navigation in software maintenance. In
ICSM, pages 325–334, 2005.

[28] V. Sinha, D. Karger, and R. Miller. Relo: Helping
users manage context during interactive exploratory
visualization of large codebases. In VLHCC, pages
187–194, 2006.

[29] M.-A. Storey, C. Best, J. Michaud, D. Rayside,
M. Litoiu, and M. Musen. Shrimp views: An
interactive environment for information visualization
and navigation. In CHI (Extended Abstracts), pages
520–521, 2002.

24

