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Abstract—Some of the most fascinating feats of cognition
are never witnessed or heard by others, yet they occur daily
in the minds of software developers practicing their craft.
Researchers have desperately tried to glimpse inside, but with
limited tools, the view into a developer’s internal mental pro-
cesses has been dim. One available tool, so far overlooked but
widely used, has demonstrated the ability to measure the phys-
iological correlates of cognition. When people perform complex
tasks, sub-vocal utterances (electrical signals sent to the tongue,
lips, or vocal cords) can be detected. This phenomenon has
long intrigued researchers, some likening sub-vocal signals to
the conduits of our thoughts. Recently, researchers have even
been able to decode these signals into words. In this paper,
we explore the feasibility of using this approach and report
our early results and experiences in recording electromyogram
(EMG) signals of software developers performing program-
ming tasks. We believe, these techniques can shed light into
the cognitive processes of developers and may even provide
novel interactions in future programming environments.
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I. INTRODUCTION

As the world becomes increasing dependent on the bil-
lions and trillions lines of code written by software de-
velopers, little comfort can be taken in our limited insight
into how developers manage to create software or how to
educate and train new developers to meet new demands.
Understanding how developers solve problems is not limited
to theory-building —but can have real downstream effects in
improving education, training, and the design and evaluation
of tools and languages for programmers. If simple measures
of cognitive effort and difficulty could be easily obtained and
correlated with programming activity, then researchers could
quickly identify and quantify which types of activities, seg-
ments of code, or kinds of problem solving are troublesome
or improved with the introduction of a new tool.

In studying programmers, decades of psychological and
observational experiments have relied on techniques such
as comparing task performance, instrumenting work en-
vironments (e.g., logging key and mouse movements), or
having programmers articulate their thoughts in talk-aloud
protocols. Each method, when skillfully applied, can yield
important insights and findings. But these methods are not
without their problems. In human studies of programming,
individual and task variance [1] in performance often mask

any significant effects hoping to be found when evaluating
a new tool. With instrumentation data, experimenters have
recorded actions, but little context and must substitute cog-
nitive measures such as cognitive effort or memory retention
with metrics such as ratio of document navigations to edits
or frequency of revisiting a method. Talk-aloud protocols,
like surveys, rely on self-reporting and require considerable
manual transcription and analysis that garner valuable but
indefinite and inconsistent insight.

Within the past few decades, modern research disci-
plines, such as psychology and cognitive neuroscience, have
collectively embraced methods that measure physiological
correlates of cognition as a standard practice. One such
method, electromyography (EMG), is a passive means of
measuring electrical signals emitted from muscle nerves.
Over a century of literature has established a deep connec-
tion between speech motor activations and cognition that can
be reasonably detected with EMG.

Speculating on some possibilities: Suppose there was a
method to measure every time a programmer was confused
or uncertain when using a new API? Demonstratively state,
a new fault localization tool or asynchronous web program-
ming framework reduces cognitive effort. Determine how
much of programming involves visual or verbal cognition?
Have fine-grain measures of difficulty that predict what is
time-consuming and error-prone in any programming task.
Achievement of any one of these goals can have wide
ramifications on how we evaluate and design tools and
languages for programmers.

In this paper, we describe our efforts and early results
in collecting and analyzing EMG signals acquired from
programmings during two programming tasks. We provide
the background, materials, proposed experiments, technical
details, and emerging results for a novel method of evaluat-
ing cognitive effort when programming.

II. BACKGROUND

A. Inner Speech

Inner speech is soundless mental speech that accompanies
and carries our inner thoughts. During silent reading of
text, we often perceive the sound of partial or complete
words we encounter but make no perceivable movement of
our lips or sound. However, silent reading is a relatively
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Figure 1. Raw emg signal over 2 seconds.

recent human invention: reading during medieval periods
was primarily spoken aloud or in muffled tones [2]. One
of the first accounts of silent reading occurs in 397 A.D.
when Saint Augustine reports his astonishment of seeing
his teacher, Ambrose, reading to himself [3]:

Now, as he read, his eyes glanced over the pages
and his heart searched out the sense, but his voice
and tongue were silent.

But what has been understandably called silent is not
necessarily so. Even for modern readers, ever so slight
movement of the tongue or lips (imperceivable to the naked
eye) still occurs when we read or perform mental calcula-
tions. Movement of vocal muscles itself is not necessary for
thought, but merely the final recipient of motor and premotor
commands sent by the brain. Dodge (1896) demonstrated
this when he anesthetized his own lips and tongue and found
no effect on his own inner speech [4].

Inner speech is not a perfect mirror of speech: when
subjects read a novel aloud, the reading speed was 66%
slower than silent reading [5]. Often a reader may only
subvocalize the first part of the word.

Other late 19th and early 20th century researchers at-
tempted to understand motor movements associated with
cognition [6]. Some attempts used a glass balloon that en-
cased the tongue to detect movement, whereas others used an
inflated balloon to immobilize tongue movement. Ultimately,
movement of the mouth or tongue was found to be unreliable
as too much noise resulted from breathing. More success
was found with readings from electromyographs (EMG) that
recorded electricity from muscle nerves.

B. Subvocalization and EMG

Sokolov [6] (1972) embarked on an extensive research
program that involved recording EMG during various tasks.
Sokolov recorded EMG of students translating Russian
literature to English and studied the effect of suppressing
subvocalization during the task. Suppression resulted in re-
duction of correctly translated units; however, the recordings
of EMG varied dramatically between individuals and even
the same individuals rereading the same passage. Upon a
second reading, a reader having high EMG before, may have
a weak EMG or moments of no signal. Rote tasks such
as recalling your name or identifying objects involved little
subvocalization. One conclusion may be that people can vary
the degree of subvocalization as a matter of attention and

degree of study. Indeed, subvocalization has been strongly
associated with rehearsal processes for memory retention
and comprehension [7] and focusing attention on goals [8].

When people subvocalize, additional brain pathways are
activated as a result. These activations encourage and boost
hippocampal memory formation [9]. When seeing a word,
not only does the meaning of the word needs to be retrieved,
but the context and relevant actions associated with the word
may need to be retrieved. Subvocalization activates motor
and auditory pathways that extend the reach and strength of
retrieval and comprehension [10].

Finally, several researchers have successfully been able
to recognize words from EMG signals. An initial approach
was able to recognize a set of 6 trained words with 92%
accuracy [11]. More general approach based on matching
phonemes and facial electrodes, has scaled to over 100 words
with 10% error rate [12].

C. Alternative physiological measures

Electromyography is not the only physiological method
that researchers use to study cognition. Here, we briefly
highlight some of the advantages that EMG offers in contrast
to other methods.

Pupillometry measures the task-evoked pupillary response
over time in relation to attention. The pupil size dilates
during moments of increased attention while users perform
tasks. Pupillometry can be an effective measure of calcu-
lating fine-grained levels of cognitive effort, but lacks the
specificity of verbal processing that subvocalization entails.

Electroencephalography (EEG) also records electrical ac-
tivity, but instead from brain neurons. Intuitively, EEG may
seem like a more direct method for measuring cognitive
activity; however, EEG signals, due to cranial bone and skin,
are an order of magnitude weaker than EMG signals and are
spatially defuse. Because EEG involves very similar data
collection and analysis methods, a potential technique can
involve simultaneous recordings of both EEG and EMG.

fMRI measures changes in blood oxygenation levels asso-
ciated with increased brain activity within 1-8 seconds to re-
gions of brain with 1-3 mm3 precision. Although immensely
powerful, fMRI imaging requires that the measured tasks are
in short duration (<30 seconds) and highly repeatable (100s
of trials) in order to reliably detect brain activity. Not to
mention, being inside a fMRI machine is not very conducive
for programming tasks: participants must be placed in a
small tube for a long duration with limited hand movement
and extreme levels of noise.

In sum, EMG is relatively low cost but potentially high
yield of cognitive measures created from a signal more
reliably measured than some other techniques.
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Figure 2. The vagus nerve and muscles of larynx (left) and electrodes to
record larynx muscle activity (right).

III. PRELIMINARY EXPERIENCES

A. Equipment and Target Nerves

To measure EMG, we used the Mobi EMG recording
device 1, supporting up to eight channels recording at 2048
Hz. The Mobi is a light and portable device that can transmit
the EMG signal in realtime via bluetooth. To synchronize
the EMG signal with events from experiments or IDE
instrumentation, we used a Labjack U3 2. Essentially, the
Labjack can send digital pulses to Mobi in order mark events
in the signal stream, which is necessary when correlating
events such as navigation with subvocalization.

There are several muscle groups that can be targeted
when measuring motor speech (see Figure 2). Facial mus-
cles can produce strong signals when positioning the lip,
and are essential for when forming certain sounds (e.g.,
fricative phonemes in the word “fresh”). Accurately measur-
ing tongue movements typically requires more specialized
equipment. Instead, measuring the larynx, i.e. voice box, is
more widely favored by researchers. The larynx is less likely
to be activated by stray movements and does not require
overt movement. However, signals from the larynx lack the
richness seen in facial movements.

In our recordings, we experimented with recording 1-2
channels with dry electrodes positioned on the throat and/or
near the lips (see Schultz [12] for other electrode positions).

B. Pilot Recordings

To initially test our equipment, we recorded 30 minutes
of audio, video and EMG signals from silent and spoken
readings of sentences from the TIMIT database. As a result,
basic tool support was built for reading and displaying EMG
signals and aligning with audio. One lesson learned with that
it was difficult to correlate EMG with external events if there
was no markers for the EMG.

To address the issue of signal segmentation, a separate
channel for events was created with the help of the Labjack
device. The Labjack device allowed signals to be generated
and interleaved while recording EMG. Software was written

1http://www.tmsi.com/?id=5
2http://labjack.com/u3

to present a series of words to a subject, with events
generated by Labjack prior to the word being displayed and
the subject hitting a button.

After establishing the basics of recording EMG signals,
focus was shifted to recording EMG simultaneously with
programming tasks. A experimental workbench was devel-
oped to handle giving experimental tasks to the subject,
launching an instrumented programming environment, and
marking the EMG signal with the instrumented events. Two
participants were given the test and data collected. After
running the experiments, what was immediately apparent
was that the protocol required too munch interaction with
the experimenter. As a result, the protocol was modified to
simplify how participants performed the tasks and interacted
with the experimenter and tested on more participants.

C. Data cleaning and analysis

Any physiological recordings from humans must elim-
inate numerous sources of noise. Noise from heart beats
and electrical devices will appear in the original raw signal
(notice three heart beats in Figure 1). Such noise can
typically be eliminated by using standard signal processing
filter, such as a 60 Hz notch. Further, a high-pass filter can
reduce noise from other sources (we used a 200 Hz,Q=0.3
high-pass filter) in our processing.

Finally, to transform the signal from continuous form
into discrete events, the signal is windowed into 1/8 second
chunks and passed through a low amplitude filter. Min and
max value is collected and a resulting intensity is calculated.

IV. RESEARCH QUESTIONS

Research Question 1 - Can subvocalization be used to
measure difficulty of programming task?

Controlled experiments often involve assigning different
“difficulties” of programming tasks to software developers,
but it’s never clear whether they are actually more difficult
for each person or why. If programmers subvocalize during
programming tasks, then we may have more insight into
why individuals find tasks more difficult. In future work,
this question could be extended to determine which program-
ming tools are more difficult to use or to compare difficulties
in using different programming languages.

Research Question 2 - When do developers subvocalize?

Although we can record activity such as navigating or
searching when a programmer codes, it is difficult to
measure to what extent a programmer is actually reading
and interacting with the source code text. If programmers
subvocalize during some types programming activity, we
may be better able to differentiate between moments of
visual scanning or more involved cognitive processing. We
may also be able to better differentiate between code that
was relevant and irrelevant for a programming task. Future
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Figure 3. EMG and Programming events over 13 minutes of activity.

studies, can extend this question to probe the visual or verbal
structure of cognitive processing when programming.

V. EARLY RESULTS

A. Task effort

To answer research question 1, we give two program-
ming tasks that was previously found to vary in difficulty
for developers. We then measured the difference in the
number and intensity of subvocalization events between the
easy task and hard task. From our pilot experiments, we
found a significant difference by a D-test (p <0.01) in
the corresponding subvocalization events and levels. These
results would suggest that we can use subvocalization as an
additional measure of task difficulty. However, testing with
more subjects and programming tasks must be performed to
confirm these results.

B. Subvocal correlates

To answer research question 2, we instrumented the
activities in a programming environment and recording cor-
responding subvocal events during the programing task. The
task was to modify Tetris to drop a falling figure completely
down when pressing the space key. To gain more insight, we
had the programmer describe their approach after performing
the task, and then manually reviewed the recorded history to
identify those activities. We then examined the correlations
of the recorded history and subvocal events.

In Figure 3, we show subvocalization events (blue) and
programming events collected from the task. We found
subvocal activity to be strongly associated with certain
activites and conditionally during others. Subvocalization
was strongly associated with making edits to code. During
program exploration, we found limited subvocalization. Sub-
vocalization mainly occurred when the subject encountered
important code (logic for moving Tetris block) and (testing
when block stops moving). We also found subvocalization
when the developer was debugging and testing the program,
which may be associated with problem formulation and
solution evaluation.

C. Discussion
We have observed some support for our research ques-

tions. However, more research and better standards need
to be developed ensuring noise and other effects are better
accounted for. Swallows, stray audio (questions) need to be
automatically or manually removed to remove false events.
Stray thoughts may also be an issue.

Already we have seen researchers identify subvocalized
words from EMG signals. However, these are from seg-
mented EMG signals (not continuous streams) and super-
vised algorithms. An alternative approach that can be used
for studying programmers would be to classify characteris-
tics of EMG signals. Can we identify introspection (when a
programmer asks themselves a question), frustration (intona-
tion), or memorization (rapid repeats that indicate attempts at
rehearsal)? Future work can try unsupervised classification
algorithms on labeled recordings of subvocalizations.

VI. CONCLUSION

The inner minds of programmers have been mostly closed
to experimentation. Measuring EMG signals from subvo-
calization may provide a peek inside. Although, we have
presented some promising results for understanding “the
muscles of the mind”, more research is needed. Further,
each technique has different strengths and weaknesses, EMG
should be considered alongside other physiological tech-
niques and qualitative measures. Both exciting possibilities
and many challenges lie ahead.
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