
Crowd Documentation: Exploring the Coverage and the
Dynamics of API Discussions on Stack Overflow

Chris Parnin
College of Computing

Georgia Tech
Atlanta, GA USA

chris.parnin@gatech.edu

Christoph Treude, Lars Grammel, and
Margaret-Anne Storey

University of Victoria
Victoria, BC Canada

ctreude@uvic.ca,lars.grammel@gmail.com,
mstorey@uvic.ca

ABSTRACT
Traditionally, many types of software documentation, such
as API documentation, require a process where a few peo-
ple write for many potential users. The resulting documen-
tation, when it exists, is often of poor quality and lacks
sufficient examples and explanations. In this paper, we
report on an empirical study to investigate how Question
and Answer (Q&A) websites, such as Stack Overflow, fa-
cilitate crowd documentation — knowledge that is written
by many and read by many. We examine the crowd doc-
umentation for three popular APIs: Android, GWT, and
the Java programming language. We collect usage data us-
ing Google Code Search, and analyze the coverage, quality,
and dynamics of the Stack Overflow documentation for these
APIs. We find that the crowd is capable of generating a rich
source of content with code examples and discussion that is
actively viewed and used by many more developers. For
example, over 35,000 developers contributed questions and
answers about the Android API, covering 87% of the classes.
This content has been viewed over 70 million times to date.
However, there are shortcomings with crowd documentation,
which we identify. In addition to our empirical study, we
present future directions and tools that can be leveraged by
other researchers and software designers for performing API
analytics and mining of crowd documentation.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Documentation

General Terms
Documentation, Human Factors

Keywords
Crowd documentation, API documentation, Stack Overflow

Georgia Tech Technical Report GIT-CS-12-05

1. INTRODUCTION AND MOTIVATION
Software developers need up-to-date and consistent knowl-

edge of their craft and tools. There are many efforts to pro-
mote the creation and maintenance of good documentation,
however, all too often, documentation is absent or incom-
plete. When documentation is written, it quickly becomes
stale. This stagnation is often the root of mistrust, which
can lead to users rarely consulting documentation [11]. Ap-
plication Programming Interface (API) documentation, in
particular, is often spartan [19], leaving developers with in-
sufficient examples or explanations.

Recently, a new culture and philosophy has emerged that
is reshaping the face of software documentation. This
change has resulted from widely accessible infrastructure
and social media technology — wikis, blogs, Q&A sites.
Similar to how open source development disrupted the pro-
cess of traditional software development [15], these new
forms of contribution and collaboration have the potential
to redefine how developers learn, preserve, and communicate
knowledge about software development. But unlike commu-
nity documentation, where a person may freely contribute to
the documentation of an open source project [3], with crowd
documentation, the individual contribution through social
media does not matter as much as the aggregate result. An
individual in a crowd may make a one-time contribution,
such as voting on an answer, tagging a question, providing
an answer, or asking a question with limited effort and little
commitment. For developers who contribute to these new
media, there is almost no barrier to entry, no community
vetting, and there are no formal processes that would be
otherwise associated with traditional or community-based
forms of documentation.

To illustrate the potential impact of crowd documenta-
tion: while the official documentation for Java provides one
code example1 to illustrate synchronization with invoke-

Later(), but without explanatory text and sparse com-
ments, on the Q&A website Stack Overflow2, 286 related
questions can be found. Not only are the contributions on
Stack Overflow more numerous, but the crowd also provides
explanatory text, succinct code snippets, multiple perspec-
tives debating the merits of different solutions, votes on pop-
ular answers and good questions, and tags for improving
searches.

Although we know that social media (and older incarna-

1
http://java.sun.com/developer/technicalArticles/Threads/swing/Editor.java

2http://stackoverflow.com/

tions, such as newgroups) have been actively used by soft-
ware developers, there has been scant research to investigate
the benefits and limitations of social media as a form of soft-
ware documentation. In this paper, we examine Q&A sites
in particular, and we ask whether we can rely on the crowd
to generate examples and explanations about APIs. With-
out a centralized authority, can these many voices produce
a comprehensive alternative to traditional documentation?
Unlike API documentation, where a collection of resources
(such as specifications and code examples) are comprehen-
sively organized and explicitly linked with API elements,
crowd documentation is created in a tacit manner, with-
out any comprehensive organization or explicit links to API
elements. Although we can offhandedly infer the value of
crowd documentation by the large number of contributors
and contributions present, we have no comprehensive way
for understanding the content of contributions or for evalu-
ating the value and quality of those contributions.

To explore the feasibility of crowd documentation for soft-
ware development, we examine the coverage and dynamics
of the discussions about APIs on Stack Overflow. To an-
alyze coverage, we build a traceability model between API
elements and the questions and answers on Stack Overflow,
and then measure the percentage of classes that have trace-
ability links into the examples and explanations generated
by the crowd. A high coverage would suggest that it is fea-
sible for crowd documentation to generate a comprehensive
source of knowledge about an API. To analyze the dynamics,
we examine the nature of the roles, contributions, and cu-
rating actions of the crowd. A high number of contributors
would confirm the “crowd-like” nature of crowd documenta-
tion and a high-level of knowledge curation would suggest
improved quality of crowd documentation. Further, under-
standing the dynamics of crowd documentation can give us
insights into the chemistry of successful and unsuccessful
communities on Q&A sites.

To perform our empirical study, we collected evidence
from over 7 million question and answers on Stack Over-
flow accumulated over a 4 year span, and studied in de-
tail: 6,323 questions and 10,638 answers related to the GWT
API, 119,894 questions and 178,084 answers related to the
Android API, and 181,560 questions and 445,934 answers
related to the Java API. We also collected usage data for
2,432 classes of the Java API and for 1,038 classes of the
Android API through Google Code Search.

We find that crowd documentation can generate many
examples and explanations of API elements. Although the
crowd can achieve a high coverage of API elements, the speed
of achieving that coverage was linear over time. Further-
more, sometimes the crowd may need to be steered towards
certain topics. For example, the crowd was mute on cer-
tain topics, such as accessibility (e.g. accommodate disabled
users) or digital rights management (DRM) capabilities in
Android. We also found that the discussion dynamics fol-
low a pattern where the“crowd”asks questions and a smaller
pool of “experts” answer them. However, we observed that
the least active API, GWT, lacked this dynamic, suggesting
that API stakeholders may want to play a stronger role in
seeding communities.

Finally, for the purpose of galvanizing the research com-
munity, we extend our focus beyond passively observing
crowd documentation and outline future steps and directions
for actively harnessing crowd documentation in applications

of crowd documentation mining and analytics. For example,
we illustrate a simple approach for using the crowd-curated
discussions on Stack Overflow to automatically generate API
documentation for a class. We also provide a treemap visu-
alization tool for exploring the discussion and usage of API
elements, allowing API stakeholders to assess the health of
their API through the voice of the crowd.

After reviewing related work in Section 2, we make the
following contributions:

• a conceptualization of crowd documentation (Section 3),

• a foundational study on the coverage and dynamics of
crowd documentation (Sections 4 and 5), and

• future directions and approaches for crowd documenta-
tion mining and analytics (Section 6).

2. BACKGROUND AND RELATED WORK
Work related to our research can be divided into work on

API documentation and recent work on using social media
channels for documenting software.

2.1 API Documentation
The knowledge needed by software developers is diverse.

It is captured using different forms of documentation, writ-
ten by different creators, and communicated to a variety of
audiences [22]. Several researchers have strongly argued that
documentation should be written from multiple views and
perspectives [2] which span requirements, behaviors, tasks,
and should include patterns and examples [8].

Many developers regard documentation as a necessary
evil, written only as an afterthought to adhere to bureau-
cratic regulations [17]. Therefore, documentation ends up
being incomplete and inaccurate. In a survey of software
professionals, Forward and Lethbridge [5] found that con-
tent, up-to-dateness, availability, and the use of examples
are the most important document attributes. In a related
study, Lethbridge et al. [12] explored how software engi-
neers use and maintain documentation. They found that
most software engineers do not update documentation in
a timely manner, with the exception of highly-structured,
easily-maintained forms of documentation, such as test cases
and in-line comments.

The nature of the documentation process differs based
on the context. In closed documentation, documents rarely
leave the boundaries of a closed source system: documents
are created by a few and read by a few. In contrast with
closed documentation, API documentation is written by a
few, but read by many. For example, with the Java pro-
gramming language, developers can refer to JavaDoc docu-
mentation of classes and methods to understand how to use
the API. The process of documenting APIs and frameworks
requires different kinds of documents [1], including example
applications, recipes and cookbooks, patterns, motifs, con-
tracts, overviews, and reference manuals.

Effectively documenting and using APIs is not trivial. Ro-
billard [19] observed insufficient or inadequate examples as
obstacles for developers trying to learn an API. He also
identified several other task-, format-, and design-related
obstacles. Although useful documentation can come from
JavaDoc, the resulting documentation is often narrow in fo-
cus and sometimes overly verbose.

These shortcomings have called the software engineering
research community to action. But rather than improving

API Traceability

Crowd
API Element

API
Index

Threads Code Samples

Thread

Asks

Answers

Curates

Stack Overflow

Question?

Answer

Code Samples Code Samples Threads Linked
Threads

Answer

Accepted
Answer

Links Extracted from answers and questions

Stores traceability links

Figure 1: Our model for crowd documentation of APIs.

the process of creating API or framework documentation,
the solution to bad documentation has been to instead build
better knowledge discovery tools [4]. Research tools, such
as Hipikat [23] or Strathcona [6], provide developers with
recommendations in the form of relevant artifacts or code
examples. Other tools, such as jungleloids [14], ease API
use by answering how to properly sequence a set of calls in
order to reach a certain property or object.

2.2 Socially-Mediated Documentation
The possibilities and limitations of crowd documentation

in software development are currently unrealized. Guided
by research that found web search to be the leading way to
learn about new APIs [20], in our previous work [18], we
analyzed the Google search results for one particular API
– jQuery – and discovered that, besides the official sources
of documentation, many socially-mediated sources of doc-
umentation appeared. For example, we found at least one
blog post on the first page of the search results for 88% of the
methods in jQuery; and for 84% of the methods, we found
at least one question on Stack Overflow on the first page of
the search results.

Pagano and Maalej examined the blogging behaviors of
developers who commit to open source projects: Eclipse,
GNOME, PostgreSQL, and Python [16]. They used a blog
aggregator site to find bloggers associated with the devel-
opment projects, and then matched the blogger’s identity
to source code committers in the project. In the study,
only 1.8% of blog posts contained source code. Pagano
and Maalej concluded that rather than documentating code,
most open-source developers used blogs for communicating
and coordinating functional requirements and domain con-
cepts about the project (as determined by an automated
LDA topic modeling algorithm) with the community and
other developers.

In their study on the design elements behind the Q&A
website Stack Overflow, Mamykina et al. [13] found that its
success is not just due to technical design, but also due to
curating activities (such as voting) and incentives (such as
reputation scores). They also found that Stack Overflow
users get very fast responses: questions are answered in a
median 11 minutes. In our own preliminary work [21], we
categorized the kinds of questions asked on Stack Overflow.
We found that the website is particularly effective at code
reviews and conceptual questions, and that roughly 85% of
the questions on Stack Overflow are answered. In a sim-
ilar but much earlier study, Johnson and Erdem [9] found

that questions on Usenet newsgroups were either goal, prob-
lem, or system oriented. Jiau and Yang searched the Stack
Overflow question titles for 103 UI widget classes and found
that some classes were discussed much more frequently than
others [7].

Previous work on Stack Overflow has mostly ignored the
content of social media sites, instead focusing on the me-
chanics of discussion. In this work, we want to look beyond
the mechanics of social media, and begin to understand the
content and value these social activities bear. To do so, we
look at the traceability links between API elements, ques-
tions, and answers on Stack Overflow, as well as the roles
and contributions of the crowd toward generating knowl-
edge about those API elements. From this understanding,
we gain better insight into how social media can be used as a
platform for socially-mediated documentation of APIs, i.e.,
the crowd documentation of APIs.

3. CROWD DOCUMENTATION
In this section, we describe a model that formally defines

the elements of crowd documentation, including the roles
and contributions of the crowd and their relationship to API
elements (see Figure 1 for an overview). We feel that our
model provides a variety of benefits. For example, other
types of social media, such as web forums or blog sites, can
be compared and contrasted to our model. A consistent ter-
minology can be established for future researchers exploring
this topic. Finally, the model is instructive for readers un-
familiar with the mechanics of Stack Overflow.

3.1 A Model of Crowd Documentation
Our model consists of threads, contributors along with

their roles and actions, and links between threads and API
elements.

3.1.1 Threads
Crowd documentation is a collection of web resources,

where a large group of contributors, the crowd, curate and
contribute to the collection. A crowd document is a crowd-
curated web resource that is distinct from other web re-
sources, such as source code repositories, where curation is
less prevalent. On Stack Overflow, the primary type of a
crowd document is a thread, a question with a collection of
answers (see Figure 2 for an example). A question is an
entry composed of a title, question body, and a maximum
of five tags. An answer is an entry composed of a body of

Axarydax

3,919 1 10 38

1 Answer

CommonsWare

163k 6 142 198

OK, I'm at the end of my wits.

I have no idea how to use ZoomButtonsController. All I want is to have a zoom controls

which I [show|hide|[enable|disable] zoom [in|out] buttons] for my View. I can't add it to my layout xml, and

when I instantiate it in my onCreate, I can't see it on the screen.

View viewer = ...
ZoomButtonsController controller = new ZoomButtonsController(viewer);
controller.setVisible(true);

android zoom

asked Dec 5 '10 at 12:09

86% accept rate

feedback

I would expect that you need to call getZoomControls() on the ZoomButtonsController , then add

that to your layout wherever you want the buttons to appear. You can confirm that theory by getting a

snapshot of your view hierarchy with hierarchyviewer when the zoom controls are theoretically visible

-- if they are not in your view hiearchy, then you will need to add them.

answered Dec 5 '10 at 12:15

How do I use Android ZoomButtonsController?

Note: Answered
in 6 minutes.

Word link

Code Markup link

Code Sample link
Href Markup link

Figure 2: A Stack Overflow thread annotated with different class reference link types.

text, providing a definite resolution to the question that is
intended for clarification or further discussion.

3.1.2 Contributors and Roles
A contributor is a member of the crowd, fulfilling at least

one contributor role. A contributor role is a capability for
performing actions on crowd documents, which may be lim-
ited based on the member’s credentials. For Stack Overflow,
the following contributor roles are available: asker, advisor,
and curator. A contributor can take on multiple roles. An
asker provides questions for the crowd and is the only contri-
bution role capable of designating an answer as “accepted”.
An advisor provides answers to a question. A curator can
perform several actions, such as voting on a question or an-
swer, or marking a thread as a “favorite”.

3.1.3 Contributor Actions
Contributor actions are commands that can be performed

on a thread or its elements, allowing contributors to curate
crowd documents. The following actions are available to
contributors on Stack Overflow:

ask An asker posts a new question.

answer An advisor provides an answer to a question.

accept An asker designates an answer as having resolved
the question.

favorite A curator saves a thread in their personal list of
threads.

vote A curator upvotes or downvotes the score of an an-
swer or question. Scores contribute to a contributor’s
reputation.

view A public visitor views a thread.

bounty A curator pays a bounty (an amount subtracted
from his or her reputation) to the advisor providing a
good answer.

3.1.4 Links
An API element is a named entity belonging to an API,

such as a class, interface, or method. In order to identify
the crowd documents related to an API element, we main-
tain an API Index, a dataset containing traceability links,
a connection between an API element and a crowd docu-
ment. Traceability links associate a set of code samples and
threads contributed by the crowd to an API element.

In order to collect more information about where and
how traceability links occur, traceability links record the
site (such as in an answer or question) and span (character
positions) of the match. The site of a traceability link is
used to determine its type:

word link A match occurring in the text of a thread.

code markup link A match fully enclosed by
<code></code>.

href markup link A match fully enclosed by <a>.

code sample link A match occurring in the text of a
<code></code>.

In Figure 2, several types of traceability links to the Zoom-
ButtonsController API element from Android are shown.

4. RESEARCH METHODOLOGY
This section outlines our research questions as well as our

data collection and analysis methods.

4.1 Research Questions
To determine the value of crowd documentation, it is cru-

cial to understand whether we can rely on the crowd to
provide questions and answers for an entire API on Stack
Overflow in a reasonable amount of time. To answer this
question, several aspects have to be considered: the extent
to which the crowd discusses different API elements, which
areas of an API are covered (and which ones are not), and
the speed at which this coverage is achieved. When devel-
opers contribute to Stack Overflow, how often will API ele-
ments be included in those discussions? Are there some API

ac
co

un
ts

co
nt

en
t.p

m

widget

android content.res

content

ap
p.

ad
m

in

ap
p.

ba
ck

up

database.sqlite

database

drm

gesture

graphics.drawable

app
graphics

hardware

in
pu

tm
et

ho
ds

er
vi

ce

location

media.audiofx

media

net.http

net.sip

ne
t.w

ifi

net

nfc.tech

opengl

os

preference

provider

sax

sp
ee

ch
.tt

s

speech

te
le

ph
on

y.
gs

m

telephony

test.mock

test

text.format

text.method

ap
pw

id
ge

t

text.style

text

bluetooth

util

vi
ew

.a
cc

es
si

bi
lit

y

view.animation view.inputmethod

view

webkit

Figure 3: Crowd documentation of Android classes. Packages and their classes are shown as a treemap, and
the number of methods is used to calculate the size for each class. A color scale is used to indicate the number
of threads: white classes have no threads whereas dark classes have many threads. A log scale is used for
mapping the number of threads onto color.

elements that are ignored, and are there others that are fre-
quently discussed? One of the purported advantages of any
crowd-sourced effort is the immense speed and scalability
that the crowd can supposedly achieve. For organizations
wanting to forgo or facilitate the production of API doc-
umentation, to what extent can API stakeholders rely on
crowd documentation? Will it be quick enough?

Therefore, with our first main research question, we ask:

RQ1. Can we rely on the crowd to discuss an entire
API on Stack Overflow?

RQ1.1 Are APIs widely covered?

RQ1.2 What is discussed and what is not dis-
cussed? Are those API elements infre-
quently discussed also infrequently used in
practice?

RQ1.3 How fast is the crowd at covering an
entire API?

Unlike traditional documentation, crowd documentation
has to rely on a functioning crowd to provide questions,
answers, votes, and comments. The availability of such a
crowd and its good dynamics are essential for crowd docu-
mentation. To examine the dynamics of a successful API
community on Stack Overflow, we need to understand who
the contributors are and what contributions they make. The

crowd has a variety of contributer actions available to them
for designating the quality of answers and questions on Stack
Overflow. Some are implicit (e.g., viewing a thread), some
are personal (e.g., marking a thread as “favorite”), and some
are paid (e.g., offering a bounty). How are these various
curator operators applied by the crowd, and what effect do
they have on the resulting coverage of crowd documenta-
tion?

Several research efforts have suggested that documenta-
tion can be improved by finding code examples from web
resources. However, the specific nature of the question and
answer format on Stack Overflow may change that dynamic.
For example, when compared with code samples found in
code repositories (such as GitHub) or in web resources (such
as blog posts), code samples in Stack Overflow questions
may be more likely to contain problems. Is there still a
chance for success if we rely on the dynamics of a crowd?

Our second main research question focuses on these dif-
ferent aspects of crowd dynamics:

RQ2. What are the dynamics of a successful API
community on Stack Overflow?

RQ2.1 Who contributes?

RQ2.2 How does the crowd contribute?

RQ2.3 How many code samples does the crowd
provide?

API Tagged Answered Linked Accepted Voted Viewed >500 Favorited Bountied

Android 119,893 102,160 70,123 62,497 47,896 26,285 25,782 970
85% 58% 52% 40% 22% 21% 1%

Java 181,559 171,886, 107,184 115,169 106,462 45,159 44,280 1,320
95% 59% 63% 58% 25% 24% 1%

GWT 6,322 5,787 3,277 3,673 3,185 1,779 1,584 49
92% 52% 58% 50% 28% 25% 1%

Table 1: Breakdown of Q&A threads on Stack Overflow that are tagged with “android”, “java”, or “gwt”.

4.2 Data Collection
To retrieve data from Stack Overflow, we downloaded the

Creative Commons Data Dump that the Stack Overflow
team makes available on their blog3. While we piloted our
methodology with several versions of this dataset, all the
results we present here are based on the December 2011 ver-
sion unless otherwise noted. We imported the data into a
relational database. For each question and each answer on
Stack Overflow, we obtained information such as the title
and body, the tags assigned to the question, the creation
time stamp as well as the time stamp of the last edit, and
the number of times somebody had viewed the contribution.
We also retrieved the score for the contribution as the ag-
gregation of up-votes and down-votes, the number of times
somebody had marked a contribution as “favorite”, whether
an answer had been accepted, who wrote and edited a con-
tribution, and how many answers and comments there were
per question. For each user on Stack Overflow, we obtained
their display name, registration date, age and location, as
well as their reputation score (that is calculated based on
their activity on the site).

We examined the crowd documentation of three popular
APIs: the Android API4, the GWT API5, and the API of
the Java programming language6. We selected these APIs
because they have different characteristics, and yet, are easy
to compare. While all are written in Java, the Java API
is large and well-established, whereas the Android API is
young and only applies to the limited domain of mobile de-
velopment. Finally, while the GWT and Android APIs are
comparable in size, they have different levels of activity on
Stack Overflow. For all APIs, we downloaded a list of all
packages and classes: GWT had 845 classes, Android 1,038
classes, and Java 2,432 classes.

In addition, we collected usage data for the APIs using
Google Code Search7. For each class in our data set, we
queried Google Code Search for import statements contain-
ing that particular class (e.g., to get usage data for the
Android class TextView, we queried Google Code Search
for “import android.widget.TextView”). Since most modern
code editors support automatic import organization, this of-
fers a good approximation of actual usage data. Generic im-
ports, such as “import android.widget.*”, are rarely used8.

3http://blog.stackoverflow.com/category/cc-wiki-dump/
4http://developer.android.com/reference/packages.html
5
http://google-web-toolkit.googlecode.com/svn/javadoc/1.6/index.html

6http://download.oracle.com/javase/6/docs/api/
7http://www.google.com/codesearch
8For example, Google Code Search finds 52,790 import
statements with the fully qualified name of TextView com-
pared to 2,023 search results for the generic import of the
android.widget package.

Unfortunately, we could not collect usage data for GWT be-
cause of the recent closure of the Google Code Search API.

4.3 Data Analysis
To build our explicit model of crowd documentation for

API classes, we mined the Stack Overflow data for trace-
ability links to the classes. To guide our mining efforts, we
only considered threads tagged “android”, “java”, or “gwt”.

Traceability links are found using case-sensitive, word
boundary matches. Additionally, several semantic rules are
applied to ensure correct matches. In the case of name col-
lisions, we use the fully qualified name. For example, for
the Java Date class, we use fully qualified names to distin-
guish java.util.Date and java.sql.Date. There are also
a few cases where word boundaries will not correctly dis-
tinguish classes. For example, in Android, using naive word
boundaries, AbsListView.SelectionBoundsAdjuster would
also match AbsListView. To avoid this problem, we use
look ahead matching in certain cases. Finally, to avoid colli-
sions with common English words, we exclude word links for
single-word API elements (as defined by camel case), such
as the Intent class in Android.

To identify the traceability link type, we parse the ques-
tion or answer body using jSoup9. To extract a code sam-
ple, we collect all the code blocks in the match site that are
not associated with code markup links from the question
or answer body. For each class, we then generate a list of
threads and a list of extracted code samples associated with
the class.

For researchers wanting to perform similar studies, we
have made our code and the generated crowd documentation
of API classes (serialized as json files) available for download
at https://github.com/chrisparnin/anacrowd.

4.4 Characterizating the Collected Data
To give insight into our collected data, we provide a brief

characterization.

4.4.1 Threads
For all APIs, over half of the threads discussed at least

one API element, and most threads were curated in some
manner. For the threads we considered, 91% of threads
have at least one answer, with 64% of them accepted by
the asker. Many threads are also voted, viewed frequently,
and favorited by users. Table 1 shows detailed breakdowns
of the collected data.

4.4.2 Links
Most traceability links are code sample links (73%), fol-

lowed by word links (15%), code markup links (8%), and
href markup links (4%).
9http://jsoup.org/

Many traceability links occur in questions. 53% of threads
are linked due to traceability links in the question. In con-
trast, 38% of threads are linked due to traceability links in
an answer, and 9% due to traceability links in both answers
and the question. When inspecting threads, we observed
two types of patterns that can explain this mutual exclu-
sion. In the first pattern, an asker would present a problem
and associated code demonstrating the problem. Advisors
would then provide an explanation that would resolve the
problem, but not necessarily with code. In the second pat-
tern, an asker would ask for advice on the feasibility or the
best way to achieve a task with an API. Advisors would
then provide different code samples that would accomplish
the asker’s goal. Finally, 21% of threads have traceability
links in the accepted answer.

4.4.3 Views
According to our data, the 307,774 threads from Android,

Java, and GWT have been viewed a total of 200 million
times!

5. FINDINGS

5.1 Reliability of the Crowd
In the following, we present the findings to our first re-

search question, RQ1. Can we rely on the crowd to
discuss an entire API on Stack Overflow?

5.1.1 Extent of Coverage by the Crowd

87.2%

77.3%

54.3%

70.4%

54.6%

29.5%

47.0%

36.9%

12.5%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Android

Java

GWT
n=20

n=5

n=1

Figure 4: Coverage of API elements in crowd docu-
mentation of three APIs for three different levels of
saturation (# threads per API element).

RQ1.1 Are APIs widely covered?
To answer our first research question, we examined the

crowd documentation’s coverage of API elements. Coverage
is the percentage of classes that have at least n threads dis-
cussing the class, where n is called the saturation level. To
understand how coverage varied across different APIs, we
examined the coverage of the three selected APIs on Stack
Overflow: GWT, Android, and Java. Figure 4 shows the
results.

For 87% of all classes of the Android API as well as for
77% of all classes of the Java API, we found at least one
thread on Stack Overflow. Although the number of Java
classes is more than twice the number of Android classes,
both reached a comparable level of coverage. In contrast,

even though GWT is slightly smaller than Android, it has a
lower level of coverage at each saturation level. Low activ-
ity on Stack Overflow can impact the comprehensiveness of
crowd documentation—only 3,277 threads discussed GWT
API classes in comparison to 70,123 threads discussing An-
droid API classes. Finally, coverage with higher levels of
saturation (i.e., at least 20 threads per class) is lower, but
still comes in at 47% for Android, 37% for Java, and 12%
for GWT.

5.1.2 Areas Covered by the Crowd
RQ1.2 What is discussed and what is not dis-

cussed? Are those API elements infrequently dis-
cussed also infrequently used in practice?

We examined our second research question in two steps:
In a first step, we analyzed the correlation between how often
certain classes are used and how often they are mentioned
on Stack Overflow to understand whether low coverage for
particular elements can be explained by low usage in general.
In a second step, we conducted a manual inspection of the
most and least covered packages of each API to see what
kind of classes are discussed a lot, and which ones are not
discussed at all.

For both Android and Java, we found a strong correla-
tion between usage data (from Google Code Search) and
coverage data (from Stack Overflow): A Spearman’s rank
correlation coefficient of 0.797 for Android, and a Spear-
man’s rank correlation coefficient of 0.772 for Java. Classes
that are used by many developers are likely to have a high
discussion volume on Stack Overflow, and classes that are
only used infrequently in practice are not likely to be well
documented by the crowd either. We were not able to ob-
tain usage data for GWT because of the recent closure of
Google Code Search.

To do a more detailed analysis of areas that are thor-
oughly discussed on Stack Overflow, and areas that are
largely ignored by the crowd, we developed a visualization
that shows the number of threads for each class of an API.
Figure 3 shows the result for the Android API. Packages
and their classes are shown as a treemap, and the number
of methods determines the size for each class. A logarith-
mic color scale is used to indicate the number of threads:
white classes have no threads whereas dark classes have
many threads. Popular packages such as android.widget and
android.view are well covered, whereas areas such as the dig-
ital rights management (android.drm) and accessibility (an-
droid.accessibilityservice) are largely ignored by the crowd.
An interactive version of the visualization is available online
for both Android10 and Java11. For Java, popular packages
such as java.util and java.swing are covered well, whereas
areas such as java.security are largely ignored.

5.1.3 Speed of the Crowd
RQ1.3 How fast is the crowd at covering an entire

API?
To answer this question, we examined the speed and cov-

erage over time of crowd documentation. To measure speed,
we looked at how many API elements were discussed at ev-
ery date between July 31, 2008 and December 1, 2011 for

10http://latest.crowd-documentation.appspot.com?
api=android/

11http://latest-java.crowd-documentation.appspot.
com/?api=java

0%

20%

40%

60%

80%

100%

7/31/2008 7/31/2009 7/31/2010 7/31/2011

0%

20%

40%

60%

80%

100%

7/31/2008 7/31/2009 7/31/2010 7/31/2011

0%

20%

40%

60%

80%

100%

7/31/2008 7/31/2009 7/31/2010 7/31/2011

Java GWT n=1

n=5

n=20

n=50

n=100

Android

Figure 5: API coverage over time at various saturation levels for GWT, Android, and Java.

Android, Java, and GWT. To measure coverage, we calcu-
lated coverage of classes with various saturation levels (n =
1, 5, 20, 50, 100 threads) over time.

The results for the three APIs can be seen in Figure 5.
For all three APIs, the rate at which new classes are covered
by the crowd with various saturation levels follows a linear
pattern, with the exception of Java in the first year. The
crowd was very fast at discussing new Java classes in the
first year of Stack Overflow (about half of all classes in the
Java API were mentioned on Stack Overflow by the end of
July 2009), but the speed of the crowd decreased after that.

5.1.4 Summary
API designers cannot completely rely on the crowd to pro-

vide questions and answers for an entire API. While there is
at least one Q&A thread on Stack Overflow for about 80% of
the classes of the Java and Android APIs, some areas (such
as accessibility) are ignored by the crowd. Also, the crowd
takes time to discuss all classes of an API at a linear rate,
focusing on API elements that are frequently used.

5.2 Dynamics of the Crowd
In the following, we present the findings to our second

research question, RQ2. What are the dynamics of a
successful API community on Stack Overflow?

5.2.1 Crowd Contributors
RQ2.1 Who contributes?
To answer this question, we examined the size and compo-

sition of the crowd and its contributions in GWT, Android,
and Java. Our goal was to identify any distinguishing char-
acteristics that might reveal an interesting dynamic in how
the crowd made its contributions. The results for the crowd
size are as follows: 1,899 askers and 2,386 advisors in GWT;
25,065 askers and 21,063 advisors in Android; 44,867 askers
and 45,992 advisors in Java. To determine composition, we
looked at each user and each thread and counted the number
of times a user acted in an asker or advisor role.

To assist in characterizing the composition, we used per-
centile ranks to bin segments of users. Percentile ranks are
determined by sorting users by their frequency of contribu-
tion. Figure 6 shows the distribution of askers and advisors
for all APIs. For all APIs, the most active 25% askers make
up for more than 60% of the questions. For advisors, the dis-
tribution is more skewed; for Java and Android, the top 25%
advisors contribute around 85% of the answers. The num-
bers are even more extreme when we only look at the top
5% advisors; they contribute 64% of the answers for Java,
and 59% of the answers for Android. Consistently across

Filter GWT Android Java

Coverage 459 (54%) 905 (87%) 1879 (77%)
accepted 427 (51%) 861 (83%) 1773 (73%)
answered 458 (54%) 898 (87%) 1865 (77%)
favorited 361 (43%) 817 (79%) 1560 (64%)
voted >= 3 306 (36%) 736 (71%) 1531 (63%)
viewed > 500 366 (43%) 807 (78%) 1586 (65%)
bountied 80 (9%) 434 (42%) 750 (31%)
at least 2 filters 446 (53%) 884 (85%) 1827 (75%)
at least 3 filters 387 (46%) 834 (80%) 1680 (69%)
at least 5 filters 237 (28%) 641 (62%) 1182 (49%)

Table 2: Effects of applying different filters on the
API coverage.

all APIs, the distribution for askers is not as skewed as for
advisors, suggesting that questions come from a wide array
of people, whereas answers are largely influenced by a small
group of “power users”.

We did observe that the distribution of the GWT advisors
was not as strongly skewed as the distribution of Java and
Android advisors, providing a possible explanation for the
relatively low coverage of GWT.

5.2.2 Crowd Curation
RQ2.2 How does the crowd contribute?
To answer this research question, we examine the effect

of using various curation filters (based on available cura-
tion actions) on the crowd documentation model. Unlike
traditional documentation, crowd documentation can be fil-
tered using various quality attributes. Each thread on Stack
Overflow has a number of quantitative properties, such as
the number of views, the number of votes (and the score
based on these votes), whether it has been answered and
whether an answer has been accepted and/or bountied, and
how many times it has been favorited. While some of these
curation filters are explicit (such as votes), others are im-
plicit (such as views). Stack Overflow uses these filters to
provide sorting of Q&A threads, e.g., threads on Stack Over-
flow can be sorted by votes and level of activity. To ensure
a certain level of quality (e.g., only consider threads with an
accepted answer), the crowd documentation can be filtered
to only include threads that meet a certain threshold.

To measure the effect of each curation filter, we measured
the change in coverage for each API if only threads meeting
a certain filter are considered. For example, for the filter
“viewed > 500”, we excluded threads that have been viewed
less than 500 times. Table 2 shows the results. Apart from

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

P
e

rc
e

n
t

o
f

C
o

n
tr

ib
u

ti
o

n
s

User Percentile

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

P
e

rc
e

n
t

o
f

C
o

n
tr

ib
u

ti
o

n
s

User Percentile

Android

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 P
e

rc
e

n
t

o
f

C
o

n
tr

ib
u

ti
o

n
s

User Percentile

Askers

Advisors

GWT Java

Figure 6: The long tail distributions of askers and advisors for GWT, Android, and Java.

Metric GWT Android Java

classes with code in question 34% 74% 61%
classes with code in answer 33% 66% 58%
classes with code in accepted ans. 26% 56% 49%
classes with code total 43% 78% 68%

samples per class in question 3 125 59
samples per class in answer 2 53 52
samples per class in accepted ans. 1 23 19
samples per class total 5 178 111

Table 3: Distribution of code samples across APIs
and location.

the filter that requires a bountied answer, none of the indi-
vidual filters decrease the coverage by more than 20%.

5.2.3 Code Samples
RQ2.3 How many code samples does the crowd

provide?
To answer this question, we examined the number of code

samples that we linked to API classes. Also, we categorized
code samples based on the location they appeared in (i.e.,
questions, answers, and accepted answers). As code samples
in questions can contain problems (e.g., copied error mes-
sages [21]), code samples in answers are likely more useful.
To ensure we were not matching very small code snippets, we
only considered code samples where a code block contained
more than one line and the total code sample contained at
least ten lines in size.

Table 3 shows the distribution of code samples across lo-
cations for each of the APIs in our data. For Java and
Android, at least 49% of the classes have at least one code
sample in an accepted answer, averaging 23 and 19 code
samples per class, respectively. The numbers for code sam-
ples in answers (including non-accepted ones) and questions
are higher, with 78% of the Android API classes having at
least one code sample on Stack Overflow.

5.2.4 Summary
The composition and dynamics of the crowd suggests that

a “crowd” of developers asks questions and a small pool of
“experts” answer them. However, this dynamic may break
down if experts are making insufficient contributions. Crowd
documentation can be filtered in a number of ways to ensure
quality. Most filters only slightly decrease the coverage, and
still yield crowd documentation that covers more than 60%
of the Android and Java APIs. Code samples can be mined
from crowd documentation. Stack Overflow has at least one

code sample in an accepted answer for about half of the
classes of popular APIs.

6. DISCUSSION AND FUTURE
DIRECTIONS

This section discusses our findings and their implications.

6.1 Steering the Crowd
The crowd is too slow to ever replace official API docu-

mentation. For example, within the first year of Stack Over-
flow’s operation, the coverage of Android API classes only
reached 30%. After time, the situation greatly improved,
but still left pockets of uncovered areas. However, there are
several possible ways to help steer the crowd, for example,
by injecting incentives into the crowd. Because participa-
tion can be driven by reward [13], API designers may be
able to use these incentive channels to directly recruit the
crowd to help them out. They can reward bounties (reputa-
tion points) for providing questions and answers to specific
API packages or tasks. Automated badges (achievements
that can be earned by Stack Overflow users) can automati-
cally be rewarded to those that first ask or answer a question
about a certain API element. Reputation can be a powerful
incentive: Highly reputable Stack Overflow users have been
contacted by software company recruiters based on their rep-
utation, or received offers for consulting business. It is no
wonder that the highest contributer to the Android ques-
tions and answers also runs an Android consulting business.

Finally, API stakeholders trying to establish an API may
find it worthwhile to detect and invest expertise when an
insufficient number of expert contributions are being made.

6.2 Mining for Code Samples
There have been several approaches for improving docu-

mentation by automatically locating code examples. For ex-
ample, JavaDoc generally does not include code examples;
as a result, researchers have tried to automatically locate
and extract examples of how to use a method from code
on the web [10]. A weakness of this approach is that the
extracted code snippets have no context explaining what
they are trying to achieve. By mining code snippets cre-
ated by the crowd, this weakness can be largely offset from
the explanatory text and discussion accompanying the code
snippet.

We have demonstrated how API classes can be automati-
cally associated with code samples and highly rated threads.
For example, code samples in accepted answers could be
found for over half of the classes. However, many code ex-
amples also exist within the body of a question. In many

cases, these types of code samples may not be “ready-made”
for automated extraction, but are only understood by a hu-
man reading the discourse and guidance provided by the
advisors in a thread. There may be numerous opportunities
for more sophisticated mining techniques that can merge
and auto-correct problematic code in the question. Further,
recommendation systems can use problems and resolutions
reported in threads as a knowledge base for programmers
experiencing the same problem in an IDE.

Another unexpected challenge may be that for certain API
elements, we have actually too many code examples. For
example, java.util.ArrayList is a very popular and widely
used class featured in 8,315 code examples. How do we find
the best code examples and questions about ArrayList?

Finally, instead of just finding code examples, can we au-
tomatically generate the documentation itself? For example,
a format similar to JavaDoc could be generated, including
popular questions about a class, recommendations to exter-
nal resources such as blogs, and popular code snippets. See
an example created automatically by our prototype tool:
http://se.ninlabs.com/exp/crowd/examples/MessageDigest.html

6.3 Crowd Documentation Analytics
For better understanding of crowd documentation, we de-

veloped an interactive treemap visualization that can be
freely configured to show the number of threads, usage, or
number of methods for the classes of an API using size and
color mappings. In addition, the visualization can be filtered
by user name to highlight the contributions of a particular
user. This allows researchers and API designers to under-
stand their community and even allows users to visualize
their contributions amidst the crowd. For example, poten-
tial areas of difficulty, as identified by a disproportionate ra-
tio of discussion in questions and usage in practice, or large
patches of undiscussed sections of APIs could be detected
and explored. The interactive visualization is available on-
line for Android and Java at:
http://latest-print.crowd-documentation.appspot.com/?api=android

http://latest-print.crowd-documentation.appspot.com/?api=java

In Figure 7, we display a zoomed selection of Android,
with the usage and discussion ratio color filter. Note that
classes in some packages, such as database.sqlite, may be
problematic for programmers, as indicated by dark green
classes. Inspecting the related threads suggests this may be
due to many exceptions that developers experience.

7. LIMITATIONS
As with any chosen research methodology, there are limi-

tations with our choice of research methods.
Our traceability analysis may underestimate the num-

ber of links. For example, we would exclude a class name
that was not matching the exact case (jsonparser) or
with spaces placed in between words (Zoom Buttons Con-

troller).
In this paper, we focused on API elements that were

classes and our results may not generalize to other elements
such as methods or other aspects of APIs such as installation
or deployment. Even though the crowd curates discussions
on Stack Overflow, we do not quantify the relative strength
of a particular type of curation. For example, is it more im-
portant that a thread is frequently viewed or highly voted?
However, we argue that mining and analyzing the discus-
sions of classes on Stack Overflow represents an important

widget

content.res

content

ap
p.

ad
m

in

ap
p.

ba
ck

up

database.sqlite

media

ne
t.w

ifi

net

nfc.tech

Figure 7: Zoomed selection of treemap for Android,
with usage and discussion ratio color filter. Areas
in dark green may indicate problematic classes.

and significant step.
We also only examined our research questions from the

perspective of three APIs. Although they provide different
perspectives (a large established API, a new and specialized
API, and a less active API), we do not know how well our
results extend to other APIs that are more difficult, different
in size, or that fill a particular niche. We also did not have
usage data for GWT, due to the Google Code search service
recently shutting down.

A final limitation of our study is that we obtained our
results from Stack Overflow. The results may not extend to
other social media, or similar sites reflecting different cul-
tures or mediums. For example, the design and community
associated with sites like Quora or Reddit may offer differ-
ent dynamics than the ones we have observed. In addition,
the question and answer format may constrain the nature
of contributions when compared to other formats such as
blogs. With blogs, the ability of going into deeper levels of
discussion or offer opinions may reflect different content and
dynamics than the ones we observed.

8. CONCLUSION
We have shown several sources of evidence that crowd

documentation exists as a viable process that can emerge
from social media sites, such as Stack Overflow, for creat-
ing software documentation. Documentation can emerge in
the form of questions and answers that feature many code
examples and discussions about using API classes and meth-
ods. The authors that contribute these items take distinct
roles in curating and maintaining the quality of questions
and answers.

Crowd documentation is an effort that is shared by many,
and even if many only contribute a few items, the net result
can achieve a high coverage of API functionality with a large
impact reaching huge audiences. The process works with
similar principles as open source development but is driven
by unique and complex factors.

Finally, we highlighted tools and future directions for har-
nessing the efforts of the crowd in automatically improving
API documentation, API analytics for API designers wish-
ing to monitor the public reception of their creations, and
guidelines for steering the crowd.

Acknowledgments
We wish to thank Fernando Figueira Filho, Cassandra Pe-
trachenko, Peter C. Rigby and Jamie Starke for their feed-
back on earlier versions of this paper, and Patrick Gorman
for contributions to the visualizations used in our study.

9. REFERENCES
[1] G. Butler, R. K. Keller, and H. Mili. A framework for

framework documentation. ACM Comput. Surv., 32,
March 2000.

[2] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Pearson Education,
2002.

[3] B. Dagenais and M. P. Robillard. Creating and
evolving developer documentation: understanding the
decisions of open source contributors. In Proceedings
of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering,
FSE ’10, pages 127–136, New York, NY, USA, 2010.
ACM.

[4] U. Dekel and J. D. Herbsleb. Improving api
documentation usability with knowledge pushing. In
ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering, pages 320–330,
Washington, DC, USA, 2009. IEEE Computer Society.

[5] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In DocEng ’02: Proc. of the Symp. on
Document engineering, pages 26–33, New York, NY,
USA, 2002. ACM.

[6] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In ICSE
’05: Proceedings of the 27th international conference
on Software engineering, pages 117–125, New York,
NY, USA, 2005. ACM.

[7] H. C. Jiau and F.-P. Yang. Facing up to the inequality
of crowdsourced api documentation. SIGSOFT Softw.
Eng. Notes, 37(1):1–9, Jan. 2012.

[8] R. E. Johnson. Documenting frameworks using
patterns. In OOPSLA ’92: conference proceedings on
Object-oriented programming systems, languages, and
applications, pages 63–76, New York, NY, USA, 1992.
ACM.

[9] W. L. Johnson and A. Erdem. Interactive explanation
of software systems. In Proceedings of The 10th
Knowledge-Based Software Engineering Conference,
pages 155–164, Washington, DC, USA, 1995. IEEE
Computer Society.

[10] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Adding
examples into java documents. In Proceedings of the
2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09, pages
540–544, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. IEEE Software, 20:35–39, 2003.

[12] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. IEEE Softw., 20(6):35–39, 2003.

[13] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann. Design lessons from the fastest q&a
site in the west. In Proceedings of the 2011 annual
conference on Human factors in computing systems,
CHI ’11, pages 2857–2866, New York, NY, USA, 2011.
ACM.

[14] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: helping to navigate the api jungle. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 48–61, New York, NY, USA,
2005. ACM.

[15] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the
apache server. In Proceedings of the 22nd international
conference on Software engineering, ICSE ’00, pages
263–272, New York, NY, USA, 2000. ACM.

[16] D. Pagano and W. Maalej. How do developers blog?
an explorative study. In Proceedings of the Eigth
International Working Conference on Mining Software
Repositories, 2011.

[17] D. L. Parnas and P. C. Clements. A rational design
process: How and why to fake it. IEEE
Trans. Softw. Eng., 12(2):251–257, 1986.

[18] C. Parnin and C. Treude. Measuring api
documentation on the web. In Proceedings of the 2nd
international workshop on Web 2.0 for software
engineering, Web2SE ’11, pages 25–30, New York, NY,
USA, 2011. ACM.

[19] M. P. Robillard. What makes apis hard to learn?
answers from developers. IEEE Softw., 26:27–34,
November 2009.

[20] J. Stylos. Msdn programming help resources survey.
Personal Communication.

[21] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web?:
Nier track. In Proceeding of the 33rd international
conference on Software engineering, ICSE ’11, pages
804–807, New York, NY, USA, 2011. ACM.

[22] C. Treude and M.-A. Storey. Effective communication
of software development knowledge through
community portals. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
SIGSOFT/FSE ’11, pages 91–101, New York, NY,
USA, 2011. ACM.

[23] D. Čubranić and G. C. Murphy. Hipikat:
recommending pertinent software development
artifacts. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 408–418, Washington, DC, USA, 2003. IEEE
Computer Society.

