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ABSTRACT
Software debugging is tedious and time consuming. To re-
duce the manual effort needed for debugging, researchers
have proposed a considerable number of techniques to au-
tomate the process of fault localization; in particular, tech-
niques based on information retrieval (IR) have drawn in-
creased attention in recent years. Although reportedly effec-
tive, these techniques have some potential limitations that
may affect their performance. First, their effectiveness is
likely to depend heavily on the quality of the bug reports;
unfortunately, high-quality bug reports that contain rich in-
formation are not always available. Second, these techniques
have not been evaluated through studies that involve actual
developers, which is less than ideal, as purely analytical eval-
uations can hardly show the actual usefulness of debugging
techniques. The goal of this work is to evaluate the use-
fulness of IR-based techniques in real-world scenarios. Our
investigation shows that bug reports do not always contain
rich information, and that low-quality bug reports can con-
siderably affect the effectiveness of these techniques. Our
research also shows, through a user study, that high-quality
bug reports benefit developers just as much as they benefit
IR-based techniques. In fact, the information provided by
IR-based techniques when operating on high-quality reports
is only helpful to developers in a limited number of cases.
And even in these cases, such information only helps devel-
opers get to the faulty file quickly, but does not help them in
their most time consuming task: understanding and fixing
the bug within that file.
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1. INTRODUCTION
Debugging is an important and extremely expensive activ-

ity that encompasses several tasks: fault localization, fault
understanding, and fault removal. To reduce the manual
effort involved in debugging, researchers have proposed a
number of techniques. In particular, there is a rich body
of work in the area of fault localization, and a great deal
of research has been performed on techniques that aim to
help developers locate bugs automatically. Most of these
fault localization techniques are spectra-based—they analyze
the dynamic information collected from program executions
to locate faults (e.g., [7, 11, 12]). In this context, a signif-
icant amount of effort has been devoted to finding better
formulas that can result in a more precise localization. Al-
though these improvements were reportedly effective, a re-
cent study [24] showed that there is no best formula, and
pursuing a perfect solution in therefore pointless. In ad-
dition, spectra-based techniques require a large number of
both passing and failing executions, which are rarely avail-
able in practice.

To address these issues, and further improve automated
debugging, researchers have proposed the use of information
retrieval (IR) techniques to identify files that are likely to
contain the fault(s) responsible for a failure (e.g., [13,20,25]).
The basic idea behind these techniques is to identify such
files based on their lexical similarity with the content of the
bug reports. Specifically, these approaches treat a bug re-
port as a query and retrieve the source files that are most
related to that query using a model extracted from the com-
plete set of source files. The intuition behind these ap-
proaches is that, if a source file contains many words that
are similar or identical to words in the bug report, it is
very likely that such file is closely related to the correspond-
ing bug. Although these techniques have been shown to be
at least as effective as spectra-based fault localization tech-
niques [18], there are several issues to be addressed before
they can be widely used in real-world scenarios.

One important issue with IR-based approaches is the as-
sumption that the bug reports provided by the users can
work well as queries. Whether this assumption is satisfied
depends on the type of software considered, the characteris-
tics of the bug, and the background of the users reporting the
bug. Another problem with these approaches is the coarse-
grained nature of the results they produce. Most IR-based
approaches provide results at the file level, which can still
leave developers with a large amount of code to examine.
In addition, and as shown in a previous study from two of
the authors, providing results as a ranked list can hinder the



usefulness of the approach [17]. In general, these techniques
have never been evaluated through studies that involve ac-
tual developers, so there is limited evidence of their actual
usefulness.

To address these issues, we performed two studies: one
analytical and one using human subjects. In the analytical
study, we identified several open source projects frequently
used in previous work and performed a comprehensive eval-
uation of IR-based fault localization techniques on these
projects. The results of this study confirm that IR-based
techniques are more likely to produce good results when the
provided bug reports contain rich information, and in partic-
ular, program entity names involved in the failure. An exam-
ination of 10,000 bug reports from Bugzilla shows, however,
that only a small number of bug reports contain such infor-
mation. In our user study, conversely, we investigated the
usefulness of the fault localization results produced by an
IR-based technique, by comparing the performance of a set
of developers when performing a set of debugging tasks with
and without the help of an IR-based technique. The results
of this second study show that high-quality reports—those
for which IR-based techniques work well—are in most cases
good enough to guide the developers to the problematic files.
Even in the few cases in which the IR-based technique made
a difference, it still did not help the developers find the bug
in the problematic files, which is the task that consumed
most of the developers’ time.

This paper makes the following contributions:

• A thorough investigation of real-world software systems
and bug reports for those systems that reveals what in-
formation a bug report should contain for an IR-based
technique to produce effective fault localization results.

• A user study involving developers with professional expe-
rience that investigates how IR-based fault localization
techniques can affect the performance of developers in
their debugging tasks.

• An in-depth analysis of the study results and a discussion
of how these results may help further research in IR-based
fault localization techniques and debugging in general.

2. BACKGROUND
In this section, we introduce information retrieval and ex-

plain how it works for fault localization.

2.1 Information Retrieval
Information Retrieval [14] is the activity of identifying rel-

evant information in a collection of resources based on a
query expressed as a set of keywords. For an IR system, the
inputs are usually the query of interest and a corpus, consist-
ing of a large collection of documents, whereas the output
is a subset of documents related to the query, ranked by
relevance (computed based on textual similarity).

A frequently used indexing statistic is tf-idf (term frequency-
inverse document frequency) [14], which indicates the im-
portance of a word for a document. The more frequently a
word occurs in one document (higher tf ), and the less fre-
quently it occurs in other documents (higher idf ), the more
important it is for that document.

Queries and documents are represented in a suitable model
once they are indexed. The basic representation models in-
clude, among others, the Vector Space Model (VSM) [21],

Unigram Models (UM) [15], Latent Semantic Analysis (LSA)
[4], and Latent Dirichlet Allocation (LDA) [1].

Following is a brief description of the models:

• UM: A probability model in which the probability of each
word occurring in documents is treated independently. To
avoid instances where the occurrence of a word in previ-
ous documents is 0, UM is often smoothed by assigning a
non-zero probability, creating a Smoothed Unigram Model
(SUM).

• VSM: An algebraic model that represents queries and
documents as a vector whose elements are term-specific
weights, such as tf-idf.

• LSA: A topic-based model that uses singular value de-
composition (SVD) to represent the relationship between
documents and their containing terms with a set of topics
related to the documents and terms.

• LDA: Another topic-based model in which each docu-
ment belongs to several topics with a certain probability
distribution calculated with a Dirichlet prior.

2.2 IR-Based Fault Localization
When software users encounter a bug, they usually report

it with a description of what happened or other related in-
formation, to help developers investigate the reason for and
find the location of the bug in the source code. Since the
goal of fault localization is to retrieve source code related to
a bug, it can be modeled as an information retrieval prob-
lem. The input of the model is a bug report (the query)
and the source files (the corpus), and the expected output
is a source file (or a method) related to the bug described
in the report, which is equivalent to the relevant documents
retrieved in IR.

Because of the existence of programming language key-
words (e.g., double, if, else) and identifiers consisting of
concatenation of multiple words (e.g., filterFile, canBuild,
isLeap), an extra preprocessing step is always performed
when bug reports and source files are indexed. Together
with normal IR preprocessing, this step includes text nor-
malization (e.g., removing punctuation, converting case),
stop-word (including keyword) removal, and word splitting
and stemming (converting words to their root forms). After
preprocessing, a set of tokens are generated to be used as
terms to index bug reports and documents. The similarity
is then computed using the models mentioned in 2.1 to de-
termine the relevance of each source file to the bug report.
The most relevant source files are presented to the develop-
ers because, intuitively, the more relevant a source file is to
a bug report, the more likely it is to contain the bug.

The effectiveness of IR-based fault localization is often
evaluated using the following metrics [20]:

• Rank of Retrieved Files, which indicates how many files
need to be examined to find the bug.

• Mean Reciprocal Rank (MRR), which is a statistic for
evaluating a process producing a list of responses to a
query.

• Mean Average Precision (MAP), which evaluates infor-
mation retrieval models when a query may have multiple
relevant documents.

Although some IR-based techniques have been reported
to be effective based on these metrics [18, 20, 25], we be-
lieve that these earlier results are potentially problematic for



several reasons. First, as previously reported [9], studying
only reports for (already) localized bugs can substantially
bias fault localization results, as it may consider only high-
quality bug reports. The second issue is the assumption that
all the files changed as part of a bug fix are responsible for
a reported bug, and the faulty file is located as long as one
of the changed files is located. Finally, IR-based techniques
are never evaluated with real developers. In this paper, we
try to answer the question of what information in particu-
lar affects the fault localization results and to find out the
severity of the problems by an analytical study and a user
study that explores how IR-based fault localization helps
developers in debugging real-world bugs.

3. HYPOTHESES AND RESEARCH QUES-
TIONS

3.1 Hypotheses
The following hypotheses guided our study design:
Hypothesis 1: Not all bug reports can be used to locate

bugs using information retrieval models. Only those with
specific information can give acceptable fault localization
results.

The quality of a bug report determines the quality of the
result of IR-based fault localization techniques.

Hypothesis 2: Intuitively, if a bug report contains rich
information, it will be easier for the developer to understand
the failure and subsequently find the bug.

Developers who debug based on bug reports that contain
richer information will be more effective at locating bugs
than developers who debug with less information.

Hypothesis 3: Given a perfect ranked list of files, with
the faulty file first, developers are likely to find the bug faster
and more accurately than if no list were given.

Developers who are provided with a ranked list of poten-
tially suspicious files will locate bugs more effectively than
developers without such a list.

3.2 Research Questions
To test the above hypotheses, we formulated several re-

search questions regarding the relationship between bug re-
port quality and fault localization results, as well as how
these results affect developers’ debugging behavior.

Research Question 1: What information in a bug report
tends to produce good fault localization results?

Our first research question asks what makes a good bug
report in terms of producing good fault localization results.
Previous research [9] has found that over 50% of the stud-
ied bug reports explicitly contained file locations, and these
bug reports had significantly better fault localization per-
formance. However, such research did not examine other
items, such as method names or the context of the match.
For example, if a file location is provided in a stack trace,
then it might be one of many possible locations to inspect,
and it might be significantly harder for a developer to find.
To answer this question, we investigated previously studied
benchmark programs to categorize information contained in
bug reports and try to determine whether the information
affects the IR-based fault localization techniques.

Research Question 2: How do developers take advan-
tage of existing information in the bug reports?

After identifying the factors that affect fault localization
results, our second research question tries to answer whether

Table 1: Benchmark programs considered.
Project Description #Bugs #Source

Files

Aspectj An aspect oriented pro-
gramming extension

286 6k

SWT An open source widget
toolkit for Java

98 0.5k

ZXing A barcode image pro-
cessing library for An-
droid

20 0.4k

Jodatime A replacement for Java
Date and Time classes

9 0.2k

the same factors affect developers’ debugging performance
as well.

Research Question 3: Will developers behave and per-
form differently when they use an IR-based debugging tool
than when they do not?

Our third research question investigates comprehensively
how the IR-based debugging tool affects developers’ debug-
ging behavior.

4. ANALYTICAL STUDY
To answer the first research question, we performed a com-

prehensive analytical study on the benchmarks used by pre-
vious researchers to evaluate the effectiveness of IR-based
fault localization techniques.

4.1 Dataset
In our study, we selected four open source programs and

obtained the associated bug reports. The projects are listed
in Table 1. To obtain ranking information, we used the re-
sults generated by BugLocator [25]. We chose BugLocator
because it was built based on VSM, the foundation of many
state-of-the-art IR-based fault localization techniques. Bu-
gLocator revised VSM by taking into account the influence
of file length and integrating the similarity between a new
bug and previously fixed bugs. It has been shown that Bu-
gLocator can outperform several other IR-based techniques.
Most importantly, the authors of BugLocator made both
their tool and dataset available and many researchers have
adopted the same dataset for evaluating their own tech-
niques.

Before addressing RQ1 and assessing what information
generates good fault localization results, it is important to
understand what good fault localization results are. Pre-
vious evaluations of IR-based fault localization techniques
used an optimistic approach, in which the evaluation met-
ric for a result consisted of the best rank of any changed
file in the commit that is related to a bug fix. To investi-
gate whether this approach is justified, we studied SWT bug
reports used by previous researchers and found that about
40% of the bugs have more than one changed file. We in-
spected bugs with at least one changed file ranked at the
top of the ranked list and found that 11 out of 33 bugs have
multiple changed files and, for each of them, only 1 file in-
deed contains the causes of the failure described in the bug
report. This result is consistent with a previous study [9],
where 28% of the files changed for a bug fix where not di-
rectly related to the actual bug fix.



Table 2: SWT bug report categories.
Stack
Trace

Program
Entity

Test Case Natural
Language

Top 1 0 (0%) 35 (35.7%) 7 (7.1%) 1 (1.0%)

Top 5 0 (0%) 62 (63.3%) 9 (9.2%) 7 (7.1%)

Top 10 3 (3.1%) 71 (72.4%) 10 (10.2%) 8 (8.2%)

Total 4 (4.1%) 83 (84.7%) 10 (10.2%) 14 (14.3%)

Table 3: ZXing bug report categories.
Stack
Trace

Program
Entity

Test Case Natural
Language

Top 1 0 (0%) 3 (15%) 1 (5%) 0 (0%)

Top 5 0 (0%) 7 (35%) 2 (10%) 2 (10%)

Top 10 0 (0%) 8 (40%) 2 (10%) 5 (25%)

Total 0 (0%) 9 (45%) 3 (15%) 9 (45%)

In general, when multiple files are changed, the changed
files are not necessarily all faulty files and, in particular,
the best-ranked file may not be faulty at all. This is an
important factor to be considered when evaluating IR-based
fault localization techniques. Although there is some initial
evidence that this may not always have a significant effect on
the fault localization results [9], considering unrelated files
is less than ideal, and can skew the result in at least some
cases.

4.2 Data Categorization and Ranking
Intuitively, whether an IR-based approach can work effec-

tively in fault localization will heavily depend on whether
the bug reports are good enough to be used as query key-
words. To investigate whether this intuition is correct, we
examined bug reports from the benchmarks described above
and categorized the information contained in them, which
includes stack traces, program entity names, test cases, and
pure natural language descriptions. We call stack traces,
program entity names, and test cases identifiable informa-
tion because these three types of information can be directly
matched to classes, methods, or variables in the program.

We associated the information contained in the bug re-
ports with the results generated by BugLocator [25] and
tried to find whether this information affected the results.1

We selected those bugs whose faulty files were ranked in
the Top 1, Top 5, and Top 10 and examined whether their
reports contained the information mentioned above. The
reason we used absolute rank instead of percentage rank is
that the programs we studied are relatively large, so even
Top 1% consists of at least 20 files. As we observed later
in our user study (see Section 5.5), people rarely looked
past the first 3 suggestions. Therefore, absolute rank makes
more sense in terms of helping developers to narrow down
the search space.

The results are presented in Tables 2 through 5, where
each table describes the bug reports for a benchmark pro-
gram. For each program, the corresponding table shows
how many bug reports match each information category
(columns), divided by fault localization performance (rows).

1We used the exact results generated by BugLocator and did
not filter out the changed files that are not buggy because
this filtering was not part of the technique(s) considered.

Table 4: JodaTime bug report categories.
Stack
Trace

Program
Entity

Test Case Natural
Language

Top 1 0 (0%) 2 (22.2%) 2 (22.2%) 0 (0%)

Top 5 0 (0%) 5 (55.6%) 3 (%) 0 (0%)

Top 10 0 (0%) 7 (77.8%) 4 (44.5%) 0 (0%)

Total 0 (0%) 8 (88.9%) 4 (44.5%) 1 (11.1%)

Table 5: AspectJ bug report categories.
Stack
Trace

Program
Entity

Test Case Natural
Language

Top 1 7 (2.4%) 38 (13.3%) 17 (5.9%) 9 (3.1%)

Top 5 14 (4.9%) 56 (19.6%) 25 (8.7%) 22 (7.7%)

Top 10 18 (6.3%) 61 (21.3%) 30 (10.5%) 27 (9.5%)

Total 78 (27.3%) 145 (50.9%) 138 (48.3%) 66 (23.1%)

For example, for SWT, there was only one bug report that
contained natural language and achieved a perfect top rank,
whereas 35 bugs that contained program elements achieved
a perfect top rank. In the tables, the total does not sum up
to 100% because there is overlap among bug reports con-
taining stack traces, test cases, and program entity names.
All percentages are computed over the total number of bug
reports.

4.3 Analysis
After we manually categorized our bug reports based on

the information they contained, we performed a data anal-
ysis to evaluate Hypothesis 1 and answer RQ1.

Bug report category determines localization result.
If Hypothesis 1 were true, we would expect to see that IR-

based fault localization generated better ranked lists when
the input bug reports contained the rich information we
mentioned above. Both SWT and AspectJ contain a consid-
erable numbers of bugs, so we performed an unpaired t-test
on the two projects in order to assess whether the presence
of richer information caused significant differences in the re-
sults of IR-based fault localization.

The average ranking of faulty files was 6.64 and 21.85
for bugs in SWT whose reports contain and do not contain
the program entity names, respectively. The difference is
statistically significant by a t-test (p < 0.05 ). Similarly,
for bug reports containing the same type of information in
AspectJ, the average ranking was 43.10 and 156.42, respec-
tively, which is also statistically significant (p < 0.05 ).

However, the difference caused by the presence of stack
traces and test cases was not statistically significant, despite
the fact that the average ranking of faulty files is indeed
better when such information is present. We also compared
the difference caused by combinations of different types of
information. Interestingly, after we removed the bug reports
containing stack traces and test cases, the average rankings
became 26.65 and 120.44, and the difference between pure
program entity names and natural language became highly
statistically significant (p < 0.01 ).

The reason behind this, as we observed, is that some stack
traces and test cases contain many class names and method
names, and only a small subset of the names are closely



related to the bug. The other names created noise for IR-
based techniques when they tried to compute the textual
similarity. Therefore, stack traces and test cases do not
always help IR-based techniques even though they contain
very rich information.

To conclude, we found some support for Hypothesis 1 ac-
cording to the above analysis. The effectiveness of IR-based
techniques is affected by the quality of bug reports, but not
all good bug reports can produce good fault localization re-
sults.

Program entity names help generate good fault local-
ization results.

Although in the context of Hypothesis 1 we found that
stack traces and test cases may not always help improve IR-
based fault localization results, there are some cases where
they do generate good ranked lists. We use SWT and As-
pectJ as examples to illustrate how the information con-
tained in bug reports may affect fault localization results.

For SWT, among the bugs whose faulty files are ranked
Top 1 by the IR-based approach, 35 of the associated reports
contain program entity names, such as classes or methods,
most of which are indeed faulty. In 7 bug reports, the users
reported the bug along with test cases to reproduce the bug.
For all 7 bugs, the classes containing the bugs are explicitly
used in the provided test cases.

For AspectJ, 7 out of 49 bug reports for which the IR-
based approach ranked the faulty files as Top 1 contain stack
traces. After comparing the files on the stack and the actual
faulty files, we noticed that all the 7 faulty files appear more
frequently on the stack than any other file. For the bug
reports that ranked the faulty files in the Top 10, the names
of the faulty files also occur many times, and the IR-based
technique was therefore able to rank them high.

For almost all the benchmark programs, very few bug re-
ports that contain only pure natural language descriptions
produced good fault localization results. On average, bug
reports containing only natural language account for 11%
of Top 1 results, 18% of Top 5 results, and 20% of Top 10
results. All other bug reports producing good fault localiza-
tion results contain at least one piece of information of type
stack traces, test cases, or program entity names.

Therefore, the answer to RQ1 is that program entity names
in a bug report tend to result in good ranked lists when used
for IR-based fault localization; stack traces and test cases are
useful information, but they do not always help.

If bug reports that produce good fault localization re-
sults contain identifiable information, such as program en-
tity names, and sometimes stack traces or user provided test
cases, we would like to assess how often such information is
present in bug reports. According to a study by Saha and
colleagues [20], more than 80% of bug reports contain an ex-
act match for at least one of the files to be fixed. However,
their study was performed on the dataset selected by pre-
vious researchers using certain criteria, instead of on bugs
randomly chosen from bug repositories. Therefore, their re-
sults might not apply for other real-world bug reports.

To investigate further, we extracted 10,000 SWT bug re-
ports from Bugzilla (https://www.eclipse.org/swt/bugs.php)
and gathered statistics about the information contained in
these bug reports. Our data shows that 10% of the bug re-
ports contain stack traces, 3% contain test cases, and 45%
contain the names of program entities (including those con-

taining stack traces and test cases). The remaining 55% of
bug reports consist of pure natural language.

With a large portion of bug reports not containing enough
identifiable information, our data do not support those pre-
viously presented results. According to such data, IR-based
approaches are unlikely to be effective in a majority of cases.

5. USER STUDY
To answer RQ2 and RQ3, we performed a user study.

In this section, we discuss the study and our findings. We
first present the program that we used in the study, our
participants, the study setting, and our evaluation metrics.
We then discuss our results in detail.

5.1 Benchmark Program
We chose SWT as our benchmark program because it is a

well maintained open source project with an associated bug
tracking system. At the same time, as a graphical widget
toolkit, SWT is neither too trivial nor too complicated for
users who are not familiar with it.

5.2 Participants
The participants in our study were students enrolled in

graduate-level software engineering classes. At the time
of the study, they were already familiar with software de-
bugging and had learned the concept of automated fault
localization. We recruited students from both regular on
campus classes and Georgia Tech’s OMSCS program (http:
//www.omscs.gatech.edu/). It is important to note that most
students enrolled in the OMSCS program are professional
developers with many years of software development expe-
rience. Overall, we had 70 participants in total with various
programming and working experience. In the rest of this sec-
tion, we will use “participants” and “users” interchangeably
to refer to the participants.

5.3 Study Settings

5.3.1 Variables and Bug Selection
Our experimental study includes both experiment-related

variables and bug-related variables, as follows.
The ranked list that is generated by the fault localization

technique: the user is either given the list (Y ) or not given
the list (N ). To the best of our knowledge, most IR-based
techniques present their results in the form of a ranked list.
Therefore we use a ranked list to represent the results of the
technique.

The information that a bug report contains: only natural
language descriptions (NL) or program entity names (PE).
Based on the answer to RQ1, we know that IR-based tech-
niques perform better with the names of program entities,
so we wanted to see whether the users would also perform
better with the same information.

The fault localization result that the fault localization tech-
nique produces: a good result (the faulty file ranks first, G)
or a bad result (the faulty file ranks below the Top 10, B).

By combining the above two variables, we identified four
types of bug reports to be selected:

• PE-G: containing the program entity names and produc-
ing good fault localization results.

• PE-B: containing the program entity names and produc-
ing bad fault localization results.

https://www.eclipse.org/swt/bugs.php
http://www.omscs.gatech.edu/
http://www.omscs.gatech.edu/


Table 6: User study groups.
Group Task 1 Task 2

1 PE-G-Y-1 PE-G-N-2
2 PE-B-Y-3 PE-B-N-4
3 NL-G-Y-5 NL-G-N-6
4 NL-B-Y-7 NL-B-N-8
5 PE-G-Y-2 PE-G-N-1
6 PE-B-Y-4 PE-B-N-3
7 NL-G-Y-6 NL-G-N-5
8 NL-B-Y-8 NL-B-N-7

• NL-G: containing only natural language descriptions and
producing good fault-localization results.

• NL-B: containing only natural language descriptions and
producing bad fault-localization results.

We selected 8 bugs (bug IDs 1–8), 2 for each type, based
on the following criteria:

• We were able to find the code revision directly fixing the
bug. We searched the code repository of SWT with the
bug ID, assuming that the developers would mention the
ID in the comments after they fixed a certain bug.

• The bugs involved only one buggy method in one file, to
make the tasks simpler.

• The buggy code revision worked, and we were able to
reproduce the bug on the Linux platform that we used in
the virtual machine provided to the study participants.

5.3.2 Experimental Groups
The participants we recruited were assigned to 8 groups

that we designed based on the variables we identified, which
are shown in Table 6.

For each group, the users were asked to finish two tasks,
one with the help of a ranked list and the other without.
The bugs in the two tasks were of the same type in terms
of the variable combination, to mitigate the bias caused by
the bug itself.

5.3.3 Data Collection
Survey Form: We used a survey form for participants to

submit their debugging results. The participants were asked
to provide the name of the file and method, and the line
number(s) as well as their confidence about the results they
provided. We assess the results in Section 5.5.

Eclipse Plugin: We created an Eclipse plugin called De-
bugRecorder to log the participants’ debugging activities.
DebugRecorder can record mouse and keyboard events pro-
duced by the participants, along with the elements associ-
ated with these events. By analyzing the events, we can get
a list of files that the users viewed, the locations in the files
on which they clicked, and their keyboard input as they were
fixing the bugs. Besides recording the debugging activities,
DebugRecorder also visualizes within Eclipse the list of sus-
picious files computed by BugLocator; by clicking on a file
in the list, the user can navigate directly to the file.

5.3.4 Procedure
To avoid the need for the study participants to configure

the environment, we created a virtual machine in which we
set up the projects, installed Eclipse, and added to Eclipse
the DebugRecorder plugin. A user was created for each of
the eight groups to access the projects assigned to them with

pre-assigned credentials. Once logged in, the participants
could follow the detailed instructions and start their debug-
ging tasks. For each debugging task, the participants were
given a bug report and a test case reproducing the bug. For
one of the two tasks, they were given a ranked list based on
which group they were assigned to. The debugging time for
each task was recommended to be, but not restricted to, 30
minutes. After the users finished the tasks, the plugin auto-
matically sent the recorded data to a server at Georgia Tech,
and the participants were guided to provide their debugging
results using the survey form. Finally, the users were asked
to give feedback about their experience using the tool. The
recorded logs and survey responses were associated with a
randomly generated ID to keep all data anonymous.

5.4 Evaluation Metrics
To assist answering RQ2 and RQ3, we defined a set of

metrics and used them to analyze the data we collected from
the study. We introduce these metrics in the rest of this
section.

5.4.1 Score of Debugging Results
To evaluate how well the developers performed in the

study, we used the following equation:

score = 0.3×class+0.3×method+0.4×(1 − distance

1000
) (1)

For each debugging result, we compared the file and method
names with our candidate bug location, identified according
to the fix committed by SWT’s actual developers. The users
received 0.3 points if the file name they provided was the
same as the name of the candidate file. Another 0.3 would
be given to the users if they gave the same method name
as the candidate fix. Finally, the users received up to 0.4
points based on how close the location they provided was
to the candidate bug location; we measured distance as the
number of statements along the shortest path between the
two locations in the interprocedural control flow graph. We
assume that two locations are not closely related if they are
more than 1000 statements away from each other.2

For the cases where the users found a different location,
we did not consider the location completely correct even if
they fixed the bug. We assumed that the fix committed to
the repository was the best since it was the one performed
by the actual developers.

5.4.2 List of Files Viewed
To investigate whether the participants navigated the files

in a different way when they were given (or not given) the
ranked list, we analyzed the list of source files that the users
viewed while they were performing their debugging tasks,
which is contained in the logs recorded by our Eclipse plugin.

5.4.3 Time Used to Debug
When comparing the users’ debugging performance, we

also want to know the time it took them to find the bug, in
addition to knowing their debugging results.

We divided the users’ debugging activities into two steps:
finding the right file and locating the bug. We calculated the

2We experimented with different values and found that this
parameter did not significantly affect the results.



Table 7: Scores for debugging results.
PE-G PE-B NL-G NL-B Overall

w/ list 0.47 0.20 0.22 0.09 0.24
w/o list 0.46 0.29 0.15 0.17 0.27

Table 8: Time used to debug (in minutes).
File Focused Bug Found

w/ list w/o list w/ list w/o list
min/med/avg min/med/avg min/med/avg min/med/avg

PE-G 1/1/4 1/4/6 17/67/76 10/35/63
PE-B 1/15/51 5/17/30 23/97/106 13/35/89
NL-G 1/9/9 3/20/15 18/120/87 30/120/87
NL-B 23/64/68 1/120/93 13/120/110 22/120/103

time used in each step separately and compared the perfor-
mance in terms of time used by the participants with the
list and those without it.

Time necessary to find and focus on the faulty file: We
calculated the time elapsed from the moment in which a
user started a task to the moment in which he or she started
focusing on the actual faulty file. By focusing on a file we
mean that the user viewed the file continuously for more
than one minute. If the user did not focus on the faulty file
at all, the time was set to 2 hours.

Time necessary to find the bug: We calculated the time
elapsed from the moment in which a user started focusing
on the faulty file to the moment in which he or she located
the bug. If the user did not find the bug, we set the duration
to 2 hours.

5.5 Results
We ran our experiment with 70 students, divided into 8

groups for evaluating Hypotheses 2 and 3, and the corre-
sponding Research Questions 2 and 3; there were 9 students
in Groups 1–6, and 8 students in Groups 7 and 8. We exam-
ined their debugging results and found some invalid entries.
Specifically, 2 participants misunderstood our instructions
and changed the test cases to make them pass, 2 reported
that they could not reproduce the bugs, and 8 submitted
incomplete data (just finished one task or did not upload
the plugin data to our server). We removed the invalid data
and ended up having valid data from 58 participants, whose
distribution in Groups 1-8 is 8, 7, 8, 8, 6, 8, 6 and 7, re-
spectively. We analyzed the valid results using the metrics
defined in Section 5.4. An overview of the results is pre-
sented in Tables 7 and 8.

Table 7 shows the average scores of the debugging results
for users working on different types of bugs with and without
the help of the ranked lists generated by BugLocator. The
minimum, median, and average time consumed by the users
in the two steps mentioned in Section 5.4 is shown in Table 8.
We do not list the maximum time because, in each group,
there was at least one participant who did not find the bug,
so the maximum time is always 120 minutes.

5.5.1 Good Bug Reports Improved Users’ Debugging
Performance

If Hypothesis 2 were correct, developers should perform
better on tasks when aided by bug reports that contained
more useful information. To evaluate this hypothesis, we

compared the time to find the bug, the average score of the
answer, and the time to focus on the faulty file (see Sec-
tion 5.4) between groups where no list was provided. There-
fore, we were measuring how much the quality of the bug
report influenced the ability of the developer to find the bug.

Without the list, the average time used to find the bug
for PE-G and NL-G showed no statistically significant dif-
ference. However, the average score was 0.46 for groups with
PE-G bug reports (1, 5), 0.15 for those with NL-G bug re-
ports (3, 7), and the difference was statistically significant
based on an unpaired t-test (p < 0.05 ). In addition, the
average time necessary to focus on the faulty file was 5.55
minutes for PE-G, 14 minutes for NL-G, and the difference
was also in this case statistically significant (p < 0.05 ).

The comparison between PE-B groups (2, 6) and NL-B
groups (4, 8) shows that there is a statistically significant dif-
ference (p < 0.05 ) in the time needed to focus on the faulty
file. However, the difference in the score of the debugging
results and time used to find the bug was not statistically
significant.

Based on these results, we found support for Hypothesis 2
in the difference in time necessary to focus on the faulty file.
However, the presence of program entity names only helps
to shorten the time to locate the file.

5.5.2 Good Ranked Lists Helped When Users Could
Not Get Enough Hints From Bug Reports

To test Hypothesis 3, we wanted to show that participants
performed better when they debugged with the help of a
ranked list generated by an IR-based technique. Comparing
the performance of groups debugging the same task with
and without the aid of a ranked list (1 vs 5, 2 vs 6, 3 vs 7,
and 4 vs 8) helped us to study this hypothesis.

For the average score of the debugging results, as well as
the time used to locate the bug, the comparison of all pairs
showed no statistically significant difference by an unpaired
t-test. The only exceptions are the NL-G groups (3 and
7). The average time needed by the users debugging NL-
G tasks with the help of the list was 9 minutes, whereas
the time necessary to participants without the list was 15
minutes (statistically significant with p < 0.05 ).

Summarizing the results, the ranked list helped develop-
ers only under certain circumstances. Therefore, we found
support for Hypothesis 3 only when the bug report does not
contain rich information, such as the program entity names,
and when the list contains the faulty file with Rank 1. In
all other cases considered, we found no support for this hy-
pothesis.

5.5.3 Users Took Advantage of the Presence of Pro-
gram Entity Names by Using Them as Search
Keywords.

The evaluation of Hypothesis 2 already showed that rich
information influenced developers’ debugging performance.
Next, we want to answer RQ2 by analyzing how performance
was affected. In the following, we only consider the data
corresponding to tasks performed without the aid of ranked
lists. We examined the logs from our plugin and the surveys
to understand performance.

An analysis of the log file shows that the participants used
the name of the program entity that appears in the bug re-
port as a keyword for searching source files. They quickly fo-
cused on the file with an exactly matching name. If the name



appearing in the report was not a file name, they searched
files containing the entity name and took longer to focus on
the right file. The participants using a bug report with only
natural language, conversely, clicked on many files at the be-
ginning before they started focusing on any file. Even after
they focused on the faulty file, they still moved to other files
and went back and forth many times.

Another observation is that, when the IR-based technique
did not rank the faulty file first, the participants also did
poorly, no matter whether or not they had the help of the
generated list. This happened because the bug reports con-
tained misleading information, and IR could not retrieve
the correct file using such information. The users were also
guided to the wrong file by the information in the bug re-
ports.

In summary, the presence of program entity names in the
bug reports did improve the developers’ debugging perfor-
mance by giving them explicit guidance on where and how
they should start looking and confidence that they were
looking in the right place.

5.5.4 Perfect Ranked Lists Improve Performance in
Limited Cases

To answer RQ3, which is about the influence of the ranked
list on users’ debugging behavior, we did the same pairs of
comparisons as for Hypothesis 3 and analyzed the data in
more detail. Specifically, we analyzed how the debugging
time, accuracy, and behavior were influenced by the presence
or absence of the ranked lists.

According to the results in Table 8, with the help of the
list, the time taken for the participants to focus on the faulty
file was 2 minutes shorter when the bug report itself con-
tained the program entity names, and 6 minutes shorter
when the bug report only contained natural language de-
scriptions. Both cases show that the ranked list helped users
to focus on the faulty files quickly. For most of the cases with
high-ranked bug reports, we see that there is almost no dif-
ference between debugging accuracy when using a ranked
lists or not using it (average 0.24 and 0.27). However, the
presence of the ranked list actually lengthened the time nec-
essary to find the bug. Moreover, for cases in which the IR-
based technique did not rank the faulty file in the Top 10,
the participants performed worse then using the list.

This is easy to understand for cases in which the ranked
list was inaccurate, as the participants tended to focus on
the wrong files even after they viewed the faulty file. If the
list was accurate, however, the participants easily identified
the right file, but they spent more time locating the bug in
the file. The time to locate the bug for NL-G groups was
the same with or without the list because the confidence
given by the list avoided wasting time on other files (see
Section 6.1), which compensated for the extra time used to
understand the bug. In general, considering the time spent
in the two steps identified in Section 5.4 makes the results
of existing IR-based fault localization techniques sound less
promising, as they help developers perform only the least
expensive of these two steps (finding the right file).

After examining the lists of files that the participants
viewed while they were debugging, we noticed that there
was a difference for users with and without the help of the
ranked list. This difference indicates that the list did af-
fect the users’ debugging behaviors by leading them to some
files they would otherwise not consider. The difference is,

however, rather small. For the same bug, most of the files
viewed were the same in the two cases. A further analysis of
the log files shows that the difference exists mainly because
the users with the ranked list would click on the files ranked
at the top of the list. After that, they would switch to the
same file(s) viewed by the users without the lists

To summarize, the ranked lists generated by the IR based
fault localization techniques do not always help users debug;
they only help when the techniques can generate perfect
lists for bugs without rich, identifiable information in the
reports. Moreover, if the generated list is not good enough,
it can even harm developers’ performance by leading them
to focus on the wrong files.

6. DISCUSSION

6.1 Implications

The quality of bug reports matters.
As shown in our analytical and user study, the contents

of the bug reports have a strong influence on both the effec-
tiveness of automated techniques and the performance of the
developers. On the one hand, if a bug report contains identi-
fiable information, such as program entity names, IR-based
techniques tend to generate good fault localization results
by directly matching the name to source files with or con-
taining the same name. On the other hand, developers can
also perform better with a bug report with such information
by directly taking advantage of emergent hints in the report.

Conversely, both developers and automated techniques
suffer in the presence of poor quality bug reports. Poorly
written reports contain much irrelevant and misleading in-
formation, which unintentionally misleads both IR and de-
velopers.

Therefore, developing approaches that help users write good
bug reports seems to be more urgent than further investigat-
ing IR-based techniques.

Developers are smart enough to locate faulty files quickly
when given a rich bug report.

When a bug report contains rich information, such as
names of program entities, it is often obvious to the develop-
ers where they should start looking. Many bug reports that
can generate perfect ranked lists already contain the names
of the faulty files or methods. It is very likely that the de-
velopers would look at these files and entities mentioned in
the bug reports first anyway, no matter whether they have
additional help from an automated technique. If the devel-
opers happen to be those who developed the project, and
are thus very familiar with it, they should be able to find
the relevant file(s) immediately. Even if the developers are
not familiar with the project, they can probably still find
the relevant file(s) quickly using keyword search, which was
the case in our user study.

If the bug reports contain names of more than one pro-
gram entity, the developers can sometimes do a better job
than the IR-based techniques. Despite their latest improve-
ments, IR-based techniques still use textual similarity be-
tween bug reports and source code to rank files. When mul-
tiple program entity names exist, such as in a bug report
containing stack traces or test cases, pure textual similarity
may not be able to distinguish the actual buggy file from



other files that are similar but unrelated. Humans, on the
other hand, can often tell which name in the report is more
suspicious based on the structure of the sentences and their
understanding of the reports.

IR-based fault localization should focus more on im-
proving results for bug reports without identifiable in-
formation.

The users did much worse when they worked on the tasks
with bug reports containing little information that can be
used to directly identify related program entities. The lack
of hints in the bug reports has two main effects on the de-
velopers’ performance when debugging. First, developers
spend much more time finding the file containing the bug.
Second, even when they find the buggy file, they are unsure
about their own decisions. They go back and forth among
different files, either to find files which might seem more
suspicious, or to gain confidence in the file they found. In
the logs recorded by the plugin, users with less information
focused on many more files, both before or after they got
to the real faulty file. They ended up spending more time
in both steps than the users with identifiable information
in the bug reports. In the post-task survey, several users
without the help of the list mentioned that they kept inves-
tigating other files because they did not know whether what
they found was correct or not.

The ranked list helped improve the confidence of the users
debugging with less information. Although the average time
used to find the bug was in the end almost the same, we
found that users with the help of perfect ranked list spent
more time on the faulty file, which is also the top ranked file
in the given list. Users given a bad ranked list also focused
on the top file much longer than other files, including the
faulty file.

When the bug report at hand does not contain obvious
bug information, fault localization gives developers both a
starting point and the confidence to focus on that point.
Therefore IR-based fault localization should focus on provid-
ing better results for bug reports without identifiable infor-
mation, so as to give developers a good starting point and
avoid giving them a false sense of confidence.

The participants had a hard time using the ranked list
generated by the IR-based technique.

There were several issues that limited the usefulness of
the ranked list. First, the lack of context information did
not help users’ understanding of the bug. An interesting
finding from the recorded data is that some users clicked
the first file on the list and quickly switched to other files,
no matter whether the file was actually faulty or not. This
happened when the bug reports contained only natural lan-
guage descriptions. These users would come back to the files
and focus on them some time later, but they also focused
on other files before that. According to the responses of the
survey form from these users, when presented with a (pos-
sibly large) source file, they felt overwhelmed and did not
know where to start inspecting the code. Only after they
had focused on some other files executed before the top-
ranked files and had an understanding of the context, they
would focus on the files in the list.

Second, the representation affected the way the ranked list
was used by the participants. The feedback from the partic-
ipants showed that the suspicious score for the top ranked

files influenced the amount of time they spent focusing on
the files. Specifically, if the suspiciousness of a file was 1,
the users tended to spend considerably more time on the file
than they would have spent on a file with lower suspicious-
ness. Besides, some users said they gave up using the list
after they looked at the 2 or 3 files at the top of the list
but were unable to figure out where the bug was. In fact,
an examination of the log files showed that all participants
clicked on at most 3 files in the list.

In summary, developers tend to give up quickly on IR-based
techniques. If these techniques want to be successful, they
have to provide not only accurate ranked lists of files, but
also finer-grained information and context to help developers
localize faults quickly.

6.2 Threats To Validity
There are several potential threats to the validity of our

study.
Different companies may provide different formats or forms

for their users to fill in when they submit a bug report. We
only examined extensively the bug reports in one project, so
our findings on bug report information may not generalize
to other projects.

We only analyzed the results generated by one IR-based
tool, BugLocator; the results may not generalize to other
IR-based approaches. However, many other IR-based tech-
niques are developed on the same assumptions that users
can provide rich information in their bug reports and are
evaluated on the same dataset used by BugLocator. We be-
lieve that BugLocator is a good representative of IR-based
fault localization techniques in general.

Although we also had several professional developers among
the participants in our user study, most participants were
graduate students. The involvement of OMSCS students
helped us mitigate this threat, as most OMSCS students
have years of professional development experience.

Our participants were not familiar with the projects they
debugged, which may not be the case in real-world situa-
tions. It is however not completely uncommon for develop-
ers to debug someone else’s code.

When there were multiple ways to fix a bug, we assumed
that the one we extracted from the project repository was
the best one, as it was the actual developers’ fix. This may
not always be the case, and some of our participants might
have found a better fix, which we however did not consider
as completely correct.

7. RELATED WORK

7.1 IR-Based Fault Localization Techniques
In recent years, researchers have been working on applying

information retrieval techniques to fault localization. Differ-
ent IR models such as the Vector Space Model (VSM) [16],
Latent Semantic Indexing (LSI) [2,16] and Latent Dirichlet
Allocation (LDA) [13] have been proposed and applied by
researchers to successfully retrieving faulty files.

Rao and Kak [18] compared 5 different text models in
terms of fault localization on a large number of real-world
bugs from the iBUGS dataset [3]. Their comparison shows
that IR-based bug localization techniques are at least as
effective as other fault localization approaches. They also
found that complicated models do not perform better than
simple models such as Unigram or VSM.



Zhou and colleagues [25] revised the original VSM model
by taking into account the sizes of source files and integrat-
ing the similarity between a new bug and previously fixed
bugs. Their revisions are based on two observations. The
first observation is that source files with larger size are more
likely to contain bugs. Their second observation is that pre-
viously fixed bugs could help locate the relevant files for a
new bug in cases in which the new bug is similar to the
fixed ones. They developed BugLocator, a tool implement-
ing their technique, and evaluated the tool on four open
source projects. Their results showed that BugLocator out-
performed previous IR-based fault localization techniques.

Saha and colleagues [20] further improved the results of
Zhou and colleagues by incorporating structural information
from the source code. The main insight of their improvement
is that source files are structured documents, and code con-
structs such as class and method names can help improve the
accuracy of fault localization. The evaluation on the same
benchmarks used by BugLocator showed the effectiveness of
their technique.

In a follow-up study, Saha and colleagues [19] investigated
whether the IR-based techniques also work for programs
written in languages that are not object-oriented. They cre-
ated a dataset containing 7500 bugs from five popular C
projects and evaluated their previous work on the dataset.
While IR-based fault localization was still effective, the in-
tegration of program structure information did not help as
much in C program as in Java programs.

7.2 User Studies on Fault Localization Tech-
niques and Tools

Despite the fact that researchers are devoting a significant
amount of effort to improving automated fault localization
techniques, only a few groups conducted experimental stud-
ies to evaluate their fault localization techniques and tools
with developers [5, 10, 22, 23]. The studies either involved
a small number of participants (less than 10) or were con-
ducted on trivial programs with less than 100 lines of code.

A relatively extensive user study was conducted to evalu-
ate Whyline [8], an interactive debugging tool allowing users
to ask questions about program behaviors. In the study, 20
participants were asked to investigate two real bugs in a large
project: ArgoUML (150 kLOC). The study results showed
that participants that used Whyline performed better than
those without the help of tool.

A previous study of two of the authors [17] assessed the
practical usefulness of a family of spectra-based debugging
techniques through a user study. The study showed that
spectra-based techniques may be based on assumptions, such
as“perfect bug understanding,”that are too strong to hold in
practice. It also showed that developers want explanations,
rather than just a list of ranked suspicious statements.

Gouveia and colleagues [6] proposed a visualization for
displaying the reports generated by existing fault localiza-
tion techniques. They used three types of visualizations—
sunburst, vertical partition, and bubble hierarchy—to dis-
play the program structure and show the fault localization
results on top of that, making it easier for developers to
understand the organization of the code and locate a sus-
picious program entity more quickly. They also performed
a user study with 40 students, who had to locate an in-
jected one-line bug in a 17 kLOC program. Their results
showed that the students using the proposed visualizations

debugged faster and better than those who used only tradi-
tional debuggers.

Although researchers are aware of the important role that
developers play in the debugging process, evaluations involv-
ing developers are still fairly rare. This is especially true
for IR-based techniques, which makes it difficult to know
whether these techniques could work in practice. In this pa-
per, we took a first step in this direction, and tried to answer
some of the open questions about IR-based fault localization
techniques.

8. CONCLUSIONS
Fault localization techniques based on information retrieval

have been attracting increasing attention in the last few
years, and several techniques have been presented in this
arena. As for any new approach, the initial evaluation of
these techniques has been somehow limited and performed
only analytically. There are, therefore, several questions
about these techniques that have not yet been answered.
What type of bug reports are amenable to IR-based fault
localization? Are the bug reports that work well with these
techniques good enough to be directly used by developers?
Can developers really take advantage of the information pro-
vided by these techniques to debug more effectively?

To answer these questions, this paper presents two in-
depth studies: an analytical study and a user study. The
results of our analytical study show that the information
needed for IR-based techniques to be effective is often not
available in bug reports, which may limit the applicability of
these techniques. Even when these high-quality bug reports
are available, and IR-based techniques can generate“perfect”
fault-localization results, they may still benefit developers
only marginally. The reason for this is that high-quality
bug reports are often good enough to guide developers to
the file in which the bug is located without any additional
help. In addition, the list of suspicious files produced by the
IR-based technique may help developers get to the right file
faster, but does not help them speeding up the localization
of the bug within that file, which we have found to be the
most time consuming part of debugging.

One of our findings, in this work, is that trying to de-
fine a one-size-fits-all, ideal automated-debugging technique
is unlikely to be a worthy pursuit. We believe that a suc-
cessful debugging approach must be able to account for the
variability in the artifacts available to developers and their
quality (e.g., in terms of test cases and bug reports). Re-
searchers should also consider other ways in which develop-
ers might want to formulate queries beyond implicit ones,
such as bug reports, and propose more interactive debug-
ging approaches. Based on our results, and on findings from
related previous work [17], we also conclude that it is of
fundamental importance to evaluate debugging techniques
through user studies. Without such studies, it is simply not
possible to assess the actual usefulness of an approach. In
addition, user studies allow researchers to identify actual
needs that they might not have realized, and whose realiza-
tion can lead to new research venues and, ultimately, to the
development of more effective debugging techniques.
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